mhill
- 180
- 1
i would like to solve these 2 problems ..
let be p and q two primes so n=p.q is known and we must determine the primes p and q is so easy as solving the system
n=p.q and \sigma _{1} (n)=1+p+q+n
with 'sigma' the divisor function that gives us the sum of the divisors of a certain number 'n' but is really so easy?
the second question is given the congruence f(x)=0 mod(p) and N(x) the number of solutions of the congruence above on the interval [0,x] is there a generating function (of any type) to compute N(x) ??
let be p and q two primes so n=p.q is known and we must determine the primes p and q is so easy as solving the system
n=p.q and \sigma _{1} (n)=1+p+q+n
with 'sigma' the divisor function that gives us the sum of the divisors of a certain number 'n' but is really so easy?
the second question is given the congruence f(x)=0 mod(p) and N(x) the number of solutions of the congruence above on the interval [0,x] is there a generating function (of any type) to compute N(x) ??