dingo_d
- 199
- 0
Homework Statement
I have a function in t=0 given by:
\psi(x,0)=\frac{1}{\pi^{1/4}\sqrt{\sigma}}e^{-\frac{(x-x_0)^2}{2\sigma^2}},
and I have to decompose it in eigenstates of harmonic oscillator given by:
u_n(x)=\left(\frac{m\omega}{\pi\hbar}\right)^{1/4}\frac{1}{\sqrt{2^nn!}}H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right)e^{-\frac{1}{2}\frac{m\omega}{\hbar}x^2}
Homework Equations
\psi(x,0)=\sum_{n=0}^\infty c_n(0)u_n(x)
I use the fact that eigenfunctions of h.o. are ortonormal, and I can find:
c_n(0)=\int_{-\infty}^\infty\psi(x,0)u_n^*(x)dx
The Attempt at a Solution
And here comes the nasty part! Evaluating that integral. Now I can really move all the constants out, they play no vital role in the evaluation of that integral.
The integral is:
c_n(0)=\int_{-\infty}^\infty e^{-\frac{(x-x_0)^2}{2\sigma^2}}e^{-\frac{1}{2}\frac{m\omega}{\hbar}x^2}H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right)dx
I can use the substitution \zeta=\sqrt{\underbrace{\frac{m\omega}{\hbar}}_{\lambda}}x, I can then sort things out a bit and get
\frac{1}{\sqrt{\lambda}}\int_{-\infty}^\infty e^{-\frac{(\zeta-\zeta_0)^2}{2\lambda\sigma^2}}e^{-\frac{\zeta^2}{2}}H_n(\zeta)d\zeta
Where I've used the substitution: \sqrt{\lambda}x_0=\zeta_0
Now I've solved similar integral by using generating function of http://en.wikipedia.org/wiki/Hermite_polynomials#Generating_function", but when I use that trick here I get:
\frac{1}{\sqrt{\lambda}}\int_{-\infty}^\infty e^{-\frac{(\zeta-\zeta_0)^2}{2\lambda\sigma^2}}e^{-\frac{\zeta^2}{2}}e^{-s^2+2s\zeta}d\zeta
The last part is the generating function. Now in some simpler exercises I would get some part with e^s and constants and Gauss integral, and then I would expand that part with Exp
\int_{-\infty}^\infty e^{-\frac{(\zeta-\zeta_0)^2}{2\lambda\sigma^2}}e^{-\frac{\zeta^2}{2}}e^{-s^2+2s\zeta}d\zeta=\sqrt{2\pi}\sqrt{\frac{\lambda\sigma^2}{\lambda\sigma^2+1}}e^{s^2-\frac{(\zeta_0-2s)^2}{2+2\lambda\sigma^2}}
I have quadratic term in s and I would have different expansion for those parts with s and s^2, and I couldn't compare that to get the desired result :\
Can anyone point me in the right direction?
Last edited by a moderator: