Somefantastik
- 226
- 0
Homework Statement
Choose \lambda_{1}, \lambda_{2}, \lambda_{3} along with a set of vectors {v_{1},v_{2},v_{3}} and construct an Hermitian matrix H with the eigenpairs (\lambda_{1},v_{1}),(\lambda_{2},v_{2}),(\lambda_{3},v_{3})
Homework Equations
The Attempt at a Solution
\lambda_{1} = 2
\lambda_{2} = -2
v_{1} = \widehat{i}+2\widehat{j}
v_{2} = \widehat{i}-2\widehat{j}
u_{1} = \frac{1}{\sqrt{5}}\left(\widehat{i} + 2\widehat{j} \right)
u_{2} = \frac{1}{\sqrt{5}}\left(\widehat{i} - 2\widehat{j}\right)
v_{3} = u_{1} \times u_{2} = -\frac{4}{5}\widehat{k}
u_{3} = -\widehat{k}
Basis: \ U = \left\{ u_{1},u_{2},u_{3} \right}\}
H = \left| \begin{array}{ccc} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{array} \right|
How does this look?