Einstein Summation Convention, Levi-Civita, and Kronecker delta

tony873004
Science Advisor
Gold Member
Messages
1,753
Reaction score
143

Homework Statement


Evaluate the following sums, implied according to the Einstein Summation Convention.
\begin{array}{l}<br /> \delta _{ii} = \\ <br /> \varepsilon _{12j} \delta _{j3} = \\ <br /> \varepsilon _{12k} \delta _{1k} = \\ <br /> \varepsilon _{1jj} = \\ <br /> \end{array}

The Attempt at a Solution


<br /> \begin{array}{l}<br /> \delta _{ii} = \delta _{11} + \delta _{12} + \delta _{13} + \delta _{21} + \delta _{22} + \delta _{23} + \delta _{31} + \delta _{32} + \delta _{33} = 1 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 =3 \\ <br /> \varepsilon _{12j} \delta _{j3} = \left( {\varepsilon _{121} + \varepsilon _{122} + \varepsilon _{123} } \right)\left( {\delta _{13} + \delta _{23} + \delta _{33} } \right) = \left( {0 + 0 + 1} \right)\left( {0 + 0 + 1} \right) = \left( 1 \right)\left( 1 \right) = 1 \\ <br /> \varepsilon _{12k} \delta _{1k} = \left( {\varepsilon _{121} + \varepsilon _{122} + \varepsilon _{123} } \right)\left( {\delta _{11} + \delta _{12} + \delta _{13} } \right) = \left( {0 + 0 + 1} \right)\left( {1 + 0 + 0} \right) = \left( 1 \right)\left( 1 \right) = 1 \\ <br /> \varepsilon _{1jj} = \left( {\varepsilon _{111} + \varepsilon _{122} + \varepsilon _{133} } \right) = 0 + 0 + 0 = 0\\ <br /> \end{array}<br />

Am I doing these right? Thanks!
 
Physics news on Phys.org
tony873004 said:
<br /> \delta _{ii} = \delta _{11} + \delta _{12} + \delta _{13} + \delta _{21} + \delta _{22} + \delta _{23} + \delta _{31} + \delta _{32} + \delta _{33} = 1 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 =3

Your final result is correct, but \delta_{ii}=\delta_{11}+\delta_{22}+\delta_{33}

\varepsilon _{12j} \delta _{j3} = \left( {\varepsilon _{121} + \varepsilon _{122} + \varepsilon _{123} } \right)\left( {\delta _{13} + \delta _{23} + \delta _{33} } \right) = \left( {0 + 0 + 1} \right)\left( {0 + 0 + 1} \right) = \left( 1 \right)\left( 1 \right) = 1

Not quite, \varepsilon _{12j} \delta _{j3} =\varepsilon _{121} \delta _{13}+\varepsilon _{122} \delta _{23}+\varepsilon _{123} \delta _{33}

\varepsilon _{12k} \delta _{1k} = \left( {\varepsilon _{121} + \varepsilon _{122} + \varepsilon _{123} } \right)\left( {\delta _{11} + \delta _{12} + \delta _{13} } \right) = \left( {0 + 0 + 1} \right)\left( {1 + 0 + 0} \right) = \left( 1 \right)\left( 1 \right) = 1

Same problem with this one.

\varepsilon _{1jj} = \left( {\varepsilon _{111} + \varepsilon _{122} + \varepsilon _{133} } \right) = 0 + 0 + 0 = 0[/tex]

Good.
 
Thank you very much!
 
\epsilon_{12j} \delta_{j1}=\epsilon_{121}=0 by defn.
 
latentcorpse said:
\epsilon_{12j} \delta_{j1}=\epsilon_{121}=0 by defn.
I'm not sure if I get this then. Am I supposed to be multiplying the epsilon and delta results together? Or is the answer gabbagabbahey gave for #2 the final answer. By multiplying, I get 1 for your example. Here's my latest attempt at the original questions:
Thanks, gabbagabbahey and latentcorpse!
<br /> \begin{array}{l}<br /> \delta _{ii} = \delta _{11} + \delta _{22} + \delta _{33} = 1 + 1 + 1 = 3 \\ <br /> \varepsilon _{12j} \delta _{j3} = \varepsilon _{121} \delta _{13} + \varepsilon _{122} \delta _{23} + \varepsilon _{123} \delta _{33} = 0\left( 0 \right) + 0\left( 0 \right) + 1\left( 1 \right) = 1 \\ <br /> \varepsilon _{12k} \delta _{1k} = \varepsilon _{121} \delta _{11} + \varepsilon _{122} \delta _{12} + \varepsilon _{123} \delta _{13} = 0\left( 1 \right) + 0\left( 0 \right) + 1\left( 0 \right) = 0 \\ <br /> \varepsilon _{1jj} = \left( {\varepsilon _{111} + \varepsilon _{122} + \varepsilon _{133} } \right) = 0 + 0 + 0 = 0 \\ <br /> \end{array}<br />
 
For some reason (perhaps just as an example?), latentcorpse calculated \varepsilon_{12j} \delta_{j1} instead of \varepsilon_{12j} \delta_{j3}

And your latest attempt looks good to me!:approve:
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top