- 1,753
- 143
Homework Statement
Evaluate the following sums, implied according to the Einstein Summation Convention.
\begin{array}{l}<br /> \delta _{ii} = \\ <br /> \varepsilon _{12j} \delta _{j3} = \\ <br /> \varepsilon _{12k} \delta _{1k} = \\ <br /> \varepsilon _{1jj} = \\ <br /> \end{array}
The Attempt at a Solution
<br /> \begin{array}{l}<br /> \delta _{ii} = \delta _{11} + \delta _{12} + \delta _{13} + \delta _{21} + \delta _{22} + \delta _{23} + \delta _{31} + \delta _{32} + \delta _{33} = 1 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 =3 \\ <br /> \varepsilon _{12j} \delta _{j3} = \left( {\varepsilon _{121} + \varepsilon _{122} + \varepsilon _{123} } \right)\left( {\delta _{13} + \delta _{23} + \delta _{33} } \right) = \left( {0 + 0 + 1} \right)\left( {0 + 0 + 1} \right) = \left( 1 \right)\left( 1 \right) = 1 \\ <br /> \varepsilon _{12k} \delta _{1k} = \left( {\varepsilon _{121} + \varepsilon _{122} + \varepsilon _{123} } \right)\left( {\delta _{11} + \delta _{12} + \delta _{13} } \right) = \left( {0 + 0 + 1} \right)\left( {1 + 0 + 0} \right) = \left( 1 \right)\left( 1 \right) = 1 \\ <br /> \varepsilon _{1jj} = \left( {\varepsilon _{111} + \varepsilon _{122} + \varepsilon _{133} } \right) = 0 + 0 + 0 = 0\\ <br /> \end{array}<br />
Am I doing these right? Thanks!