Electric Field at a point inside 2 semi circles

AI Thread Summary
To find the electric field at a point inside two semi-circles with charges of -3 micro Coulombs and +3 micro Coulombs, the principle of superposition should be applied. Each semi-circle contributes to the total electric field, and their effects must be calculated separately before summing them. The electric field from the negative charge will point towards it, while the field from the positive charge will point away from it. The symmetry of the problem suggests that the vertical components of the electric fields may cancel out, while the horizontal components will add up. The final result will not be zero due to the opposing charges, and careful consideration of their contributions is essential for the correct solution.
A Shoto
Messages
2
Reaction score
0

Homework Statement



I have this picture http://i.imgur.com/ek2N1dL.png
I have to find the electric field at the point inside 2 semi circles. The left semi circle has a charge of -3 micro Coulombs and the right one has +3 micro coulombs. The radius between the point and the circle is 0.2 meters.

Homework Equations



Electric field = ∫kdq/r2

The Attempt at a Solution



I know what the FBD looks like and how to solve a problem for one semi circle alone but adding that other piece is really throwing me off. What should I keep in mind when solving this?
 
Physics news on Phys.org
Use superposition. Find the field from each semicircle, then just add them up.
 
Well, I'm really doubting myself here. I would want to say 0... but wouldn't that be only if they were both positive or both negative...?
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top