Electric field for a plane wave in free space

jb646
Messages
10
Reaction score
0
This isn't really a homework problem, I just need to know how to do a problem similar to this one for the final and I don't want to fail, so I posted it here.

The problem is:
Given the electric field for a plane wave in free space: E(r,t)=E1cos(wt-ky)k
a)what is the statement for w and ka in the wave equation and how are they related to each other?
b)what is the direction of wave propagation?
c)write an expression for the accompanying magnetic field B
d)show that the electric field given above is is satisfied with the wave equation

relevant equations: since this is more of an explanation problem I worked the equations into the attempt at a solution

a)do I have to rearrange the equations to solve for w and k or do I just integrate to solve for them?

b)im pretty sure it is in the x-direction, that makes sense to me

c)∇xE=-(∂B/∂t)
so do I just calculate the cross products:
x y z
d/dx d/dy d/dz
E1cos(wt-ky) 0 E2cos(wt-ky)

and set that equal to -(∂B/∂t), if so, how to I un-partialize it [can you tell I'm not really a physics major, just taking a required class...sorry for the lack of terminology and general knowledge]
 
Physics news on Phys.org
a) I think part a just wants you to say what omega and k are, i.e. k is the wave propagator and omega is angular frequency. Though by all means, rearrange so that you have it in terms of wavelength and displacement.

b) What physical reason do you have to believe it's propagating in the x-direction?

c) For a plane wave, remember that the magnetic field is orthogonal to the electric field with a factor of c.

I think this wikipedia entry will greatly help you with this problem.

http://en.wikipedia.org/wiki/Electromagnetic_radiation
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top