Electric field from spherical charge distribution

Click For Summary

Homework Help Overview

The discussion revolves around calculating the electric field from a spherical charge distribution. The original poster presents two methods for solving the problem, both involving integrals related to electric potential and field calculations.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • The original poster attempts to calculate the electric field using two different methods involving integrals of charge density and potential. Some participants question the validity of the expressions used, particularly the interpretation of variables in the integrals.

Discussion Status

Participants are actively engaging with the original poster's attempts, with some providing guidance on the potential misinterpretation of variables and suggesting a more effective approach using Gauss's Law. There is recognition of the need for clarity in the steps taken in the calculations.

Contextual Notes

There is an indication that the original poster is constrained by the requirement to explore multiple methods, despite the suggestion that Gauss's Law would be a more straightforward approach for this problem.

JamMaster
Messages
3
Reaction score
0
Hello. I have a problem calculating the electric field from spherical charge distribution. The exercise is:
1. Homework Statement

aEBkS.png


Homework Equations


To solve the problem for $$ 0\le R < a$$ i tried 2 ways:
$$
\vec{E} = \frac{\vec{a_R}}{4\pi\epsilon_0}\int_v\frac{1}
{R^2}\rho dv
$$
and the second way
$$
V = \frac{1}{4\pi\epsilon_0}\int_v\frac{1}{R}\rho dv
$$
and
$$
\vec{E} = -\vec{\nabla}V
$$

3. The Attempt at a Solution

Unfortunately, neither of the attempts worked.

Using first method, substituting the charge density from the text and using spherical coordinates to calculate the integral i got
$$
\vec{E} = \frac{Q\vec{a_R}}{4\pi\epsilon_0a^4}\int_v\frac{1}
{R}R^2\sin{\theta}dRd\theta d\phi = \frac{QR^2}{2\pi\epsilon_0a^4}\vec{a_R}
$$
Which is wrong. The correct answer is very close though, where there is a 4 instead of 2 in the answer above. No matter how much i looked i couldn't find where i missed the constant.

Using the second method, i got
$$
V = \frac{Q}{4\pi^2\epsilon_0a^4}\int_vR^2\sin{\theta}dRd\theta d\phi = \frac{QR^3}{3\pi\epsilon_0a^4}
$$
Which gives the electric field
$$
\vec{E} = -\vec{a_R} \frac{\partial{V}}{\partial{R}} = -\frac{QR^2}{\pi\epsilon_0a^4}\vec{a_R}
$$
The above answer is even more wrong than the previous one.
I would really appreciate if someone could tell me what i have done wrong.
 
Physics news on Phys.org
Hello JamMaster, :welcome:

Could you explain where your expression $$
\vec{E} = \frac{\vec{a_R}}{4\pi\epsilon_0}\int_v\frac{1}
{R^2}\rho dv$$comes from ? (I know it, and I can guess where you are derailing, so I ask you to show your steps in a bit more detail)

I take it ##\vec {a_R}## is a unit vector in the r-direction ? (don't forget to list it in part 1)
 
Hey and thank you for the answer.

Apparently i can't edit post so i can't update the first one.

Yes, $$\vec{a_R}$$ is a unit vector in R-direction, and R is the length of the same vector. The equation you named is simple a formula for calculating the electric field from a charge distribution. The formula comes from Coulombs law.
 
Yes, I know. As I said. But something's wrong. Could you please show your steps in a bit more detail.
Point being that the ##R## in the denominator is not the ##R## in ##dv##.
And that this is not a way to integrate a vector ##\vec {dE}##.
Make a little drawing and you'll see.

Anyway, if you are presented with an exercise like this, you are supposed to have mastered Coulomb already and know some much more effective tool to deal with this kind of problem.

--
 
Last edited:
  • Like
Likes   Reactions: JamMaster
I see my mistake. Thank you a lot. I know this problem can be easily solved using Gauss Law, i just wanted to do it with all 3 methods.
 
This one is screaming "Gauss" all over.
 

Similar threads

Replies
10
Views
2K
  • · Replies 13 ·
Replies
13
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
879
Replies
26
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
12
Views
2K