Electric Field Help: Find E & Acceleration

AI Thread Summary
The discussion revolves around two physics problems involving electric fields and forces. For the first problem, participants are trying to find the electric field at the midpoint between two positive charges, with calculations indicating the need to consider the vector nature of electric fields and the correct distance measurement. The second problem involves calculating the electric force on a proton and its subsequent acceleration, with guidance provided on using Newton's second law and the mass of the proton. Participants emphasize the importance of correctly applying formulas and unit conversions to avoid common mistakes. Overall, the conversation highlights the need for careful calculations and a thorough understanding of electric field concepts.
austin1250
Messages
29
Reaction score
0

Homework Statement


Alright i have two problems i need help with

1st.

Find the electric field at a point midway between two charges of +43.1 10^-9 C and +61.7 10^-9 C separated by a distance of 24.7 cm.

________ N/C

2nd.

A Van de Graaff generator is charged so that the magnitude of the electric field at its surface is 2.8 104 N/C.

(a) What is the magnitude of the electric force on a proton released at the surface of the generator?
________ N
(b) Find the proton's acceleration at this instant.
________ m/s^2


Homework Equations



E= K*q/r^2


The Attempt at a Solution


For the first one, I don't really know how to get the point in the middle. I got 9.1 x 10^3 N/C for the electric frield of the 61.7 c x 10^-9 and 6.4x10^3 N/C for the 43.1 c x10-9. So basicly what i need help with is the electric field at the mid-point.

For the 2nd one. I got part (a) right, i got 4.48 x10 ^-15 N. I need help getting the acceleration of the proton at that instant.
 
Physics news on Phys.org
austin1250 said:
For the first one, I don't really know how to get the point in the middle. I got 9.1 x 10^3 N/C for the electric frield of the 61.7 c x 10^-9 and 6.4x10^3 N/C for the 43.1 c x10-9. So basicly what i need help with is the electric field at the mid-point.

For the 2nd one. I got part (a) right, i got 4.48 x10 ^-15 N. I need help getting the acceleration of the proton at that instant.

(I'm not doing your math so if that's wrong you're still in trouble, but ...) Recall that the electric field is a vector field. At the point of interest you have calculated the individual scalar magnitudes of the vectors presumably at the midpoint. All you need to do now is determine the orientation of the two field contributions and add. By inspection they are both + charges so the field will necessarily be a difference of the 2, but directed away from the greater of the 2. (+ charges have outward directed fields.)

For 2)b) Doesn't F = m*a still?
 
For your first part add the two fields vectorially,they point in opposite directions.
For your second part use Newtons second law,you will need the mass of the proton.
 
oh, ok i forgot about the mass of a proton, thanks, but I am still stuck in the first question. i don't know if i did the math wrong but I am not getting it right
 
austin1250 said:
oh, ok i forgot about the mass of a proton, thanks, but I am still stuck in the first question. i don't know if i did the math wrong but I am not getting it right

Maybe show your calculation?

Distance is cm. Did you make it (.247/2) for your distance? That's a common oversight.
 
LowlyPion said:
Maybe show your calculation?

Distance is cm. Did you make it (.247/2) for your distance? That's a common oversight.

Heres my calculations, and i did make it .247 before.

9x10^9 * 43.1 x10-9/.247^2 + 9x10^9 * 61.7 x10^-9/.247^2

is that correct?

comes out to be 6.4 x10^3 + 9.1 x 10^3 = 15500?

Then what? Do i divide by two?
 
austin1250 said:
Heres my calculations, and i did make it .247 before.

9x10^9 * 43.1 x10-9/.247^2 + 9x10^9 * 61.7 x10^-9/.247^2

is that correct?

comes out to be 6.4 x10^3 + 9.1 x 10^3 = 15500?

Then what? Do i divide by two?

No. Unfortunately you need to divide by 2 before you square your distances. So you could multiply your answer by 4 and that should undo not halving the denominator before you squared it.
 
Back
Top