Electric potential and potential energy

AI Thread Summary
A proton in a uniform electric field of 1.30 x 10^3 N/C experiences a force of 2.08 x 10^-16 N and an acceleration of 1.24 x 10^11 m/s^2. To calculate the time it takes for the proton to move 1 cm, the equation x = 1/2at^2 is applicable, where 'a' is the previously calculated acceleration. A common mistake is substituting the electric field strength for velocity instead of using the correct acceleration value. The correct approach involves using the acceleration directly in the equation to find the time. Understanding the distinction between electric field strength and velocity is crucial for accurate calculations.
dpogre
Messages
4
Reaction score
0
A proton is initially at rest (in a vacuum) in a uniform electric field of magnitude 1.30 10^3 N/C.
(a) Calculate the force applied to the proton by the field. ANSWER: 2.08E-16 N

(b) Apply Newton's second law to calculate the acceleration of the proton. (Don't be surprised if the acceleration is large. It isn't applied for a very long time.) ANSWER: 1.24E11 m/s^2

(c) Calculate the time it takes for the proton to move 1 cm in this field, starting from rest. (Hint: The acceleration is uniform.)
in part c i cannot figure out how to find the uniform acceleration.

the equation given to find the time it takes for the proton to move 1cm in this field is
x = 1/2at^2 and I'm solving for t.
0.01 m = 1/2 (Vf - Vi) t^2
0.01 m = 1/2 (1.30x10^3 - 0) t^2
but the answer i got was wrong. what am i doing wrong to find the time it takes for the proton to move 1 cm?
 
Physics news on Phys.org
(c) Calculate the time it takes for the proton to move 1 cm in this field, starting from rest. (Hint: The acceleration is uniform.)
in part c i cannot figure out how to find the uniform acceleration.
I would think you just use the acceleration you found in (b).

the equation given to find the time it takes for the proton to move 1cm in this field is
x = 1/2at^2 and I'm solving for t.
Yes, this equation will work. Now you know what the acceleration is and don't need to be substituting for it in your calculations. Just solve.

0.01 m = 1/2 (Vf - Vi) t^2
0.01 m = 1/2 (1.30x10^3 - 0) t^2
Why did you but 1.30x10^3 in for Vf? That number is the strength of the electric field, it has nothing to do with velocity. Also Remember that a = Δv/Δt
 
thank you
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top