Electron and hole concentration

AI Thread Summary
The discussion focuses on calculating electron and hole concentrations in a non-degenerate semiconductor at 300 K, given an intrinsic carrier concentration of 2 x 10^13 cm^-3 and effective densities of states of 10^19 cm^-3. For part one, it is confirmed that in an intrinsic semiconductor, the electron concentration (n) equals the hole concentration (p), both equaling the intrinsic carrier concentration. In part two, the calculation for the Fermi level position relative to the conduction band is discussed, with the assumption that n equals n_i being correct for intrinsic materials. The responses clarify that the calculations are valid under the intrinsic semiconductor assumption. The thread emphasizes the importance of confirming the intrinsic nature of the sample for accurate results.
NerdyGuy
Messages
1
Reaction score
1
Homework Statement
Physics, Semiconductor, carrier concentration
1. part unsolved
2. part solved, but not sure
Relevant Equations
##n = N_C \exp \left( - \frac{E_C - E_F}{k_B T} \right)##
##n_i (T) = \sqrt{N_C N_V} \exp \left( - \frac{E_g}{2 k_B T} \right)##
I can't solve the following exercise:

Assume for a certain non-degenerate semiconductor sampe at T = 300 K an intrinsic carrier concentration ##n_i = 2 \cdot 10^{13} \frac{1}{cm^3}## and the band effective densities of states ##N_C = N_V = 10^{19} \frac{1}{cm^3}##.
1. Determine the electron and hole concentrations n and p.
2. Find the position of the Fermi level in respect to the conduction band.

For part 1 I tried:
$$n_i (T) = \sqrt{N_C N_V} \exp \left( - \frac{E_g}{2 k_B T} \right) \\
= ... \approx 0.68 eV$$
But here I'm not sure if this is necessary and how to continue. Can anybody please help me?

My calculation for 2 is:
$$n = N_C \exp \left( - \frac{E_C - E_F}{k_B T} \right) $$
$$\Leftrightarrow E_C - E_F = k_B T \ln \left( \frac{N_C}{n} \right) $$
$$\Leftrightarrow E_C - E_F = 1,38 \cdot 10^{-23} \frac{J}{K} 300 K \ln \left( \frac{10^{19} \frac{1}{cm^3}}{2 \cdot 10^{13} \frac{1}{cm^3}} \right) $$
$$\approx 0.34 eV$$

Can anyone confirm this? Is the last step correct, where I set ##n = n_i = 2 \cdot 10^{13} \frac{1}{cm^3}##?

Best regards

NerdyGuy
 
Last edited by a moderator:
Physics news on Phys.org
First, welcome to PF!

For part #1, you did not state what values ##n## and ##p## are. Is this an intrinsic sample? If it is you can answer part #1 trivially. For part #2, you are correct only if this is an intrinsic semiconductor.
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top