Electron and hole concentration

AI Thread Summary
The discussion focuses on calculating electron and hole concentrations in a non-degenerate semiconductor at 300 K, given an intrinsic carrier concentration of 2 x 10^13 cm^-3 and effective densities of states of 10^19 cm^-3. For part one, it is confirmed that in an intrinsic semiconductor, the electron concentration (n) equals the hole concentration (p), both equaling the intrinsic carrier concentration. In part two, the calculation for the Fermi level position relative to the conduction band is discussed, with the assumption that n equals n_i being correct for intrinsic materials. The responses clarify that the calculations are valid under the intrinsic semiconductor assumption. The thread emphasizes the importance of confirming the intrinsic nature of the sample for accurate results.
NerdyGuy
Messages
1
Reaction score
1
Homework Statement
Physics, Semiconductor, carrier concentration
1. part unsolved
2. part solved, but not sure
Relevant Equations
##n = N_C \exp \left( - \frac{E_C - E_F}{k_B T} \right)##
##n_i (T) = \sqrt{N_C N_V} \exp \left( - \frac{E_g}{2 k_B T} \right)##
I can't solve the following exercise:

Assume for a certain non-degenerate semiconductor sampe at T = 300 K an intrinsic carrier concentration ##n_i = 2 \cdot 10^{13} \frac{1}{cm^3}## and the band effective densities of states ##N_C = N_V = 10^{19} \frac{1}{cm^3}##.
1. Determine the electron and hole concentrations n and p.
2. Find the position of the Fermi level in respect to the conduction band.

For part 1 I tried:
$$n_i (T) = \sqrt{N_C N_V} \exp \left( - \frac{E_g}{2 k_B T} \right) \\
= ... \approx 0.68 eV$$
But here I'm not sure if this is necessary and how to continue. Can anybody please help me?

My calculation for 2 is:
$$n = N_C \exp \left( - \frac{E_C - E_F}{k_B T} \right) $$
$$\Leftrightarrow E_C - E_F = k_B T \ln \left( \frac{N_C}{n} \right) $$
$$\Leftrightarrow E_C - E_F = 1,38 \cdot 10^{-23} \frac{J}{K} 300 K \ln \left( \frac{10^{19} \frac{1}{cm^3}}{2 \cdot 10^{13} \frac{1}{cm^3}} \right) $$
$$\approx 0.34 eV$$

Can anyone confirm this? Is the last step correct, where I set ##n = n_i = 2 \cdot 10^{13} \frac{1}{cm^3}##?

Best regards

NerdyGuy
 
Last edited by a moderator:
Physics news on Phys.org
First, welcome to PF!

For part #1, you did not state what values ##n## and ##p## are. Is this an intrinsic sample? If it is you can answer part #1 trivially. For part #2, you are correct only if this is an intrinsic semiconductor.
 
Last edited:
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top