How Do You Integrate the Electron Heat Capacity Integral by Hand?

Tphysics
Messages
9
Reaction score
0
1. The answer to this problem is easy when plugged into mathematica it's (pi^2)/3. I am trying to integrate it by hand however and can't figure out how to start it. I also can't find any other attempts of it online (our professor says we can just look it up if we can find it).

[(x^2*E^x)/(E^x + 1)^2, {x, -Infinity, Infinity}]


2. No equations

3. I've tried U-sub with setting U= (e^x+1) and then tried some integration by parts but I'm not getting there.
 

Attachments

  • Screen Shot 2015-11-12 at 6.05.31 PM.png
    Screen Shot 2015-11-12 at 6.05.31 PM.png
    24.8 KB · Views: 567
Physics news on Phys.org
Tphysics said:
1. The answer to this problem is easy when plugged into mathematica it's (pi^2)/3. I am trying to integrate it by hand however and can't figure out how to start it. I also can't find any other attempts of it online (our professor says we can just look it up if we can find it).

[(x^2*E^x)/(E^x + 1)^2, {x, -Infinity, Infinity}]


2. No equations

3. I've tried U-sub with setting U= (e^x+1) and then tried some integration by parts but I'm not getting there.

This actually turns out to be very complicated to do and I am having trouble giving hints that you can follow without giving too much of the answer away, so please bear with me. At least using Mathematica seems like a legitimate solution to the problem and I don't believe that many people would expect an undergrad to come up with the solution below on their own.

First, integrals of functions of ##x^n## times exponentials can often be done by replacing ##e^x## by ##e^{a x}## and then noting that ##d/da(e^{ax}) = x e^{ax}##, so we try to replace the powers of ##x## with derivatives of another expression. Then we can exploit this by bringing the derivative outside of the integral. For example
$$\int dx ~ x e^x = \left[ \frac{d}{da} \int dx~e^{ax} \right]_{a=1},$$
which you should be able to verify by doing both integrals explicitly.

In your case, we can use
$$ \frac{x^2 e^x}{(e^x+1)^2} = \left[ \frac{d^2}{da^2} \ln ( 1+ e^{ax})\right]_{a=1}.$$
Furthermore, we can determine the indefinite integral
$$ \int dx \ln ( 1+ e^{ax}) $$
in terms of the dilogarithm function (see for instance https://en.wikipedia.org/wiki/Spence's_function)
$$\text{Li}_2(z) = - \int^z_0 \frac{du}{u} \ln ( 1-u).$$

The big difficulty here is that the dilogarithm is infinite as ##z\rightarrow -\infty##, so the naive substitution for your integral over the whole real axis will result in a divergent integral. (The dilogarithm is also usually not defined for ##1 \leq z < \infty##, but I believe that the proper substitutions keep us on the negative real axis.) However, I believe that it is possible to show that the definite integral
$$ F(a) =\int_{-\infty}^0 dx \ln ( 1+ e^{ax}) $$
exists. So we should break your original integral into two parts, then the answer can be expressed as the appropriate derivative of ##F(a)+F(-a)##.

It will probably be important to use the results (https://en.wikipedia.org/wiki/Spence's_function#Special_values) ##\text{Li}_2(-1)=-\pi^2/12## and ##\text{Li}_2(0)=0.##
 
Thanks but this is math I am completely unfamiliar with. It ended up being doable also with a contour integral.

SOLVED.
 

Attachments

  • Snapshot.jpg
    Snapshot.jpg
    3.3 KB · Views: 464
I drew it terribly above but you catch my drift.
 
Tphysics said:
I drew it terribly above but you catch my drift.

Sure, I didn't seriously consider suggesting the contour integral because it is a bit rare to find someone comfortable with the method. I probably should have asked first. It's good that you were able to work it out yourself that way.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top