Toby_phys
- 26
- 0
Homework Statement
A solenoid of volume V, current I and n turns per unit length has an LIH core, relative permitivity is \mu_r. This core is then slid out so that a fraction f of the solenoid's length is filled with air/vacuum (and 1-f is filled with the core).
Neglecting hysteresis, what is the total magnetic energy of the core. When f is changed by amount \Delta f show the amount of work done by the power supply to keep I constant is
$$
\Delta W = n^2I^2V\mu_0(1-\mu_r)\Delta f
$$
If the core is allowed to slide, which way does it move?
Solution
If H_1 and H_2 are the auxillary fields in the core and air respectively we have, from Amperes law:
$$
H_1(1-f)+H_2f=nI
$$
**Now, as the divergence of B is 0, the magnetic field must be continuous. This means the magnetic field is (H=B/\mu)
$$
B=\frac{nI\mu\mu_0}{\mu_0+f(\mu-\mu_0)}
$$
The total magnetic energy is the sum of the magnetic energies in the 2 parts:
$$
W=Vf \frac{B^2}{2\mu_0}+V(1-f) \frac{B^2}{2\mu}=\frac{Vn^2I^2}{2(\mu_0+f(\mu-\mu_0))}
$$
**Now I am not sure how to get from here to their expression.
**And I assume that as most \mu_r>1 that the above expression is negative and so core gets pushed out.
---------
The ** are the sections I am not sure on