Entrainment and Jet Diameter Growth

AI Thread Summary
Jet diameter growth due to entrainment is influenced by whether the jet is laminar or turbulent, with specific equations applicable in each case. For turbulent jets, the spreading is characterized by a Reynolds-independent rate, but this is only valid beyond 30 initial jet diameters from the nozzle. The presence of an impingement plate can significantly interfere with jet growth, making it challenging to apply free jet equations accurately. Additionally, nearby objects can disrupt flow and entrainment, affecting the jet's performance. Experimental verification may be necessary to ensure the rig holder is positioned adequately to avoid interference with the jet.
mm391
Messages
65
Reaction score
0
Hello,

I am looking for some help in understanding jet diameter growth due to entrainment. I have an impingement plate positioned approximately 20 cm from the nozzle exit. Is there an equation or information that will allow me to figure out how a free jets diameter grows the further it gets from the nozzle exit. This is so that the rig I have that holds the impingement plate in place does not interfere with the jet growth.

Many Thanks

Mark.
 
Engineering news on Phys.org
When the jet is laminar, there are analytical equations available that describe the jet growth. When the jet is fully turbulent, the jet is self-similar and the spreading is described by the Reynolds-independent spreading rate S, but it is only valid when you are more than 30 initial jet diameters away from your inlet. So it is important to first estimate your jet Reynolds number to determine if your jet is laminar or turbulent.
A good description of the turbulent round jet case is given in Pope - Turbulent Flows and most other books that deal with turbulence.
 
Keep in mind that your impingement plate will interfere with the growth of your jet. So I think it is unlikely that any equation that describes the free jet will be accurate when there is an impingement plate. If there is a region in which an analytic expression, derived for the free jet, is valid it will be far from the plate (in terms of the ratio of jet diameter to distance to plate).

You also need to consider that just because you have placed something (to hold your rig) outside of the jet diameter, this does not mean it will not interfere with jet growth. If you have something near the jet, possibly even a few diameters away, it may interfere with the flow being entrained and therefore effect jet growth. Unfortunately this can be a difficult problem and I do not know of any analytic expressions that directly apply to your situation. Of course that doesn't mean they don't exist. But this may require some experiments to verify you have place the rig holder far enough away.
 
Entrainment is very poorly captured by models and even full scale test rigs fail to reproduce real life performance.
Rockwell tried a couple of decades back to use entrainment to improve the effectiveness of vertical lift jets.
The models worked a treat, with about a 20% boost, reduced to about 12% if memory serves in the full scale mockup. Unfortunately, real life improvement was under 5% and the XV-12 project was terminated.
 
Perhaps I am not understanding what you mean by "use entrainment to improve the effectiveness of vertical lift jets." When a VTOL aircraft (like the F-35) is near the ground attempting to lift off vertically, entrainment actually makes it more difficult. The entrained air accelerates beneath the aircraft and the pressure drops below ambient. This results in a suction force towards the ground reducing the net thrust.

I had never heard of the XV-12 until now, its a pretty interesting aircraft.
 
The idea had been to augment the vertical lift of the engines with air sucked into the jet exhaust with the help of a specialized exhaust nozzle.
VSTOL jets have to be horrendously overpowered to take off, which results in wretched fuel economy, because turbines don't run at partial speed very well. The hope had been that ejector entrainment would improve things, but the tests dashed that hope.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top