Entropy as log of omega (phase space volume)

diegzumillo
Messages
177
Reaction score
20

Homework Statement


I've seen this problem appear in more than one textbook almost without any changes. It goes like this:
Assume the entropy ##S## depends on the volume ##\bar{\Omega}## inside the energy shell: ##S(\bar{\Omega})=f(\bar{\Omega})##. Show that from the additivity of ##S## and the multiplicative character of ##\bar{\Omega}##, it follows that ##S=const \times log \bar{\Omega}##

Homework Equations

The Attempt at a Solution


I've found a couple of solutions already (one in Pathria), that consists of considering two subsystems and calculating the derivatives of S in respect to the omegas, plus a bunch of assumptions. But from the problem statement I can't help but think there's got to be a simpler way. I'm trying to expand S as a sum of ##f(\Omega_i)##, expand each f as a power series, and then use the fact that omega is the product of the omegas of the subsystems. But that leads nowhere.

Slightly off-topic: I'm taking a grad course on statistical mechanics but my previous knowledge on stat mech is very weak, so I'll probably be on these forums frequently throughout the semester. Is this the appropriate forum for stat mech homework questions?
 
Physics news on Phys.org
I don't see how power series would be easier than the described approach.

Looking at two subsystems together leads to ##f(xy)=f(x)+f(y)## (where x,y are the Ω of two different systems). Calculating the derivative with respect to x gives ##yf'(xy)=f'(x)##, the derivative of this with respect to y leads to ##f'(xy)+xyf''(xy)=0## or (using z=xy) ##f'(z) = -zf''(z)##. This differential equation is solved by ##f'(z)=\frac{c}{z}## which leads to ##f(z)=c \log(z)##.

diegzumillo said:
Is this the appropriate forum for stat mech homework questions?
It is.
 
Thanks :) That makes perfect sense. I solved it in a similar way but made some unnecessary turns here and there and it made things look more complicated.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top