Entropy Change - Irreversible Isothermal Compression

AI Thread Summary
The discussion revolves around calculating the entropy change for a nitrogen gas undergoing isothermal irreversible compression. The entropy change of the system is derived using the formula dS = nRln(P2/P1), with the participant noting the challenge of conceptualizing the entropy change of the surroundings. They inquire about the heat transfer to the surroundings, proposing that it can be expressed as q = -w, where work done by the external pressure results in heat being expelled from the system. Clarifications are made regarding the first law of thermodynamics, emphasizing that the work done on the system equals the heat removed. The conversation concludes with an agreement that heat removed from the system is equivalent to heat gained by the surroundings, affirming the importance of sign conventions in thermodynamic calculations.
Stephen Clarke
Messages
3
Reaction score
0
Given a sample of nitrogen gas (assume ideal gas conditions), the following conditions were observed inside the container. n = 0.75 moles at 253 K, and pressure = 0.5 atm. Then, an ISOTHERMAL IRREVERSIBLE COMPRESSION on the system forced by a constant Pexternal = 10 atm reduced the initial volume by a factor of 2. Assume diathermal walls on this container. Calculate the entropy change of the system, surroundings and universe.

ATTEMPT:

The entropy change of the system is under ISOTHERMAL conditions, so, dT = 0, and,

dS = nRln(P2/P1)
dS = (0.75 mol)(8.314 J/Kmol)ln(1/2)

However, I am having a difficult time conceptualizing the entropy change of the surroundings. This is obviously an integral part of computing the entropy change of this particular universe.

I'll appreciate any feedback! Thank you.
 
Physics news on Phys.org
How much heat is transferred to the surroundings (which can be considered as an ideal reservoir at 253 K)?
 
  • Like
Likes Stephen Clarke
AH! To answer your question, is it correct to say that the heat transferred to the surroundings is simply q = -w?

That is to say, work done by the constant external Pressure forces heat out of the system, or w = -P(V2-V1)?
 
Stephen Clarke said:
AH! To answer your question, is it correct to say that the heat transferred to the surroundings is simply q = -w?
Is the change in internal energy zero?
I assume you are using the form of the first law in which work done on the system is positive and work done by the system is negative: ##\Delta U=q+w##. Correct?
That is to say, work done by the constant external Pressure forces heat out of the system, or w = -P(V2-V1)?
I wouldn't say it in those words. Instead, I would say that, since the change in internal energy is zero, the work done on the system is equal to the heat removed from the system. Your equation for the work is correct, if work done on the system is taken as positive.
 
  • Like
Likes Stephen Clarke
Thanks. One last question.

I know sign convention and interpretation can get fuzzy. Is it accurate to say heat removed from this system (-Q) is equivalent to heat gained by the surroundings, in which case we would use a positive value of Q? (Since we are changing reference points, I.e., system --> surroundings.)
 
Stephen Clarke said:
AH! To answer your question, is it correct to say that the heat transferred to the surroundings is simply q = -w?

That is to say, work done by the constant external Pressure forces heat out of the system, or w = -P(V2-V1)?
Stephen Clarke said:
Thanks. One last question.

I know sign convention and interpretation can get fuzzy. Is it accurate to say heat removed from this system (-Q) is equivalent to heat gained by the surroundings, in which case we would use a positive value of Q? (Since we are changing reference points, I.e., system --> surroundings.)
Sure.
 
  • Like
Likes Stephen Clarke
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top