Entropy of Diffusion: Delta Initial Condition

  • Thread starter Thread starter simoncks
  • Start date Start date
  • Tags Tags
    diffusion entropy
simoncks
Messages
29
Reaction score
0

Homework Statement


The problem requires me to find the entropy of a diffusion constant as a function of time (I guess in terms of diffusion coefficient)

Homework Equations


Perhaps Heat / Diffusion kernel
S = k p lnp

The Attempt at a Solution


I assume it was a delta initial condition then apply the kernel. However I need to turn the entropy definition into an integral over space. The kernel times differential volume is the probability finding the particle in that space but the natural log term is tricky.
 
In short, I would like to know if there are any entropy equation integrating over space.
 
You are asking what entropy S is produced by time t by diffusion through a medium characterized by diffusion coefficient D_{ij}? If so, could you indicate the arrangement of the system at t = 0; is a point-source diffusing?
 
It is a heat equation without source term. Open boundary at infinity. Initial condition is a delta function at (x,y,z) = 0.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top