Estimating the damping coefficient of a wave assuming a very small ratio

loto
Messages
17
Reaction score
0

Homework Statement


The original problem is determining the dispersion relation of an ordinary wave in plasma damped by collisions. That part was easy enough but the next part is to find the damping rate (-Im(ω)) of the wave, assuming k is real and \nu << \omega where \nu is the collision frequency.

Homework Equations



I've found the dispersion relation to be:

\omega^2 - k^2c^2 = \frac{\omega_{pe}^2(1-i\frac{\nu}{\omega})}{(1 + \frac{\nu^2}{\omega^2})}

And we are told the damping rate is:
\gamma = \frac{\omega_{pe}^2\nu}{\omega^2 2}

The Attempt at a Solution


Since we want only the negative of the imaginary part:

\gamma = \frac{\nu\omega_{pe}^2}{\omega^2 (1+\frac{\nu^2}{\omega^2 })}

However, I can't think of an approximation that would give me that factor of 1/2. Series expansion or small number approximations don't seem to do it. If anyone has ideas, I'd just like a push in the right direction?
 
Physics news on Phys.org
Apologies if this is irrelevant, but some people write the equation for damped oscillations as
\ddot x + b\omega \dot x + \omega^2 x = 0
and other people write it as
\ddot x + 2 b\omega \dot x + \omega^2 x = 0
I deliberately wrote b in those equations rather than the usual greek letters, because I don't know what notation convention is used in plasma dynamics!

Assuming you got the first part of the question right, is that where your factor of 2 has come from?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top