Evaluating Integral with Mathematica: A & B Cases

ChrisVer
Science Advisor
Messages
3,372
Reaction score
465
Could someone please help me evaluate the integral with mathematica

\int \frac{dx}{(a(1+x^{-1})+b(1+x^{2})-1)^{1/2}}

For better in your code the integral must be:
1/sqrt[a(1+(1/x))+b(1+x^(2))-1]

For a≤1 and for cases:

A)0<b<1
B)b>1

I am sorry,but I haven't been able to receive mathematica yet... *sad face*
Deep thanks in regard

*not to be misunderstood that I'm asking to find everything ready I even know the codes I'd use in such a case:
Expand[Assuming[0<a<1 && b>1, Integrate[1/sqrt[a(1+(1/x))+b(1+x^(2))-1]]]]
Expand[Assuming[0<a<1 && 0<b<1, Integrate[1/sqrt[a(1+(1/x))+b(1+x^(2))-1]]]]
(if there would be an error I'd try to remove the expand)...I just still don't have the software at hand
 
Last edited:
Physics news on Phys.org
ChrisVer said:
Could someone please help me evaluate the integral with mathematica

\int \frac{dx}{(a(1+x^{-1})+b(1+x^{2})-1)^{1/2}}

For better in your code the integral must be:
1/sqrt[a(1+(1/x))+b(1+x^(2))-1]

For a≤1 and for cases:

A)0&lt;b&lt;1
B)b&gt;1

I am sorry,but I haven't been able to receive mathematica yet... *sad face*
Deep thanks in regard

*not to be misunderstood that I'm asking to find everything ready I even know the codes I'd use in such a case:
Expand[Assuming[0<a<1 && b>1, Integrate[1/sqrt[a(1+(1/x))+b(1+x^(2))-1]]]]
Expand[Assuming[0<a<1 && 0<b<1, Integrate[1/sqrt[a(1+(1/x))+b(1+x^(2))-1]]]]
(if there would be an error I'd try to remove the expand)...I just still don't have the software at hand

I don't understand your statement that you " haven't been able to receive mathematica yet...". Does that mean that you have placed an order to buy Mathematica but it has not arrived yet, or what?

Anyway, I don't have access to Mathematica, so I did it in Maple instead. The results are exceedingly complicated, involving Elliptic functions of complex arguments, etc. Here is the code and result for 0 < b < 1:
> lprint(f); <---I call your function 'f'
1/(a*(1+1/x)+b*(1+x^2)-1)^(1/2)
J1:=int(f,x) assuming a<1,b>0,b<1: <---output suppressed by ending in ':'
lprint(J1);-4*(EllipticF(6^(1/2)*((3*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-3*12^(1/3)*b*a-3*12^(1/3)*b^2+3*12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)*x*b*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(1/3)/(((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-12^(1/3)*b*a-12^(1/3)*b^2+12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)/(6*x*b*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(1/3)-12^(1/3)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+b*12^(2/3)*a+12^(2/3)*b^2-12^(2/3)*b))^(1/2),((-3*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+3*12^(1/3)*b*a+3*12^(1/3)*b^2-3*12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)*(((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-12^(1/3)*b*a-12^(1/3)*b^2+12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)/(-((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+12^(1/3)*b*a+12^(1/3)*b^2-12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)/(3*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-3*12^(1/3)*b*a-3*12^(1/3)*b^2+3*12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b))^(1/2))-EllipticPi(6^(1/2)*((3*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-3*12^(1/3)*b*a-3*12^(1/3)*b^2+3*12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)*x*b*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(1/3)/(((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-12^(1/3)*b*a-12^(1/3)*b^2+12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)/(6*x*b*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(1/3)-12^(1/3)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+b*12^(2/3)*a+12^(2/3)*b^2-12^(2/3)*b))^(1/2),(((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-12^(1/3)*b*a-12^(1/3)*b^2+12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)/(3*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-3*12^(1/3)*b*a-3*12^(1/3)*b^2+3*12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b),((-3*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+3*12^(1/3)*b*a+3*12^(1/3)*b^2-3*12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)*(((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-12^(1/3)*b*a-12^(1/3)*b^2+12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)/(-((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+12^(1/3)*b*a+12^(1/3)*b^2-12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)/(3*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-3*12^(1/3)*b*a-3*12^(1/3)*b^2+3*12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b))^(1/2)))/((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)*(-(((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-12^(1/3)*b*a-12^(1/3)*b^2+12^(1/3)*b)*(12*x*b*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(1/3)+12^(1/3)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-b*12^(2/3)*a-12^(2/3)*b^2+12^(2/3)*b+I*3^(1/2)*12^(1/3)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(2/3)*b*a+I*3^(1/2)*12^(2/3)*b^2-I*3^(1/2)*12^(2/3)*b)/(((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-12^(1/3)*b*a-12^(1/3)*b^2+12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)/(6*x*b*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(1/3)-12^(1/3)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+b*12^(2/3)*a+12^(2/3)*b^2-12^(2/3)*b))^(1/2)*((((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-12^(1/3)*b*a-12^(1/3)*b^2+12^(1/3)*b)*(12*x*b*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(1/3)+12^(1/3)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-b*12^(2/3)*a-12^(2/3)*b^2+12^(2/3)*b-I*3^(1/2)*12^(1/3)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-I*3^(1/2)*12^(2/3)*b*a-I*3^(1/2)*12^(2/3)*b^2+I*3^(1/2)*12^(2/3)*b)/(-((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+12^(1/3)*b*a+12^(1/3)*b^2-12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)/(6*x*b*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(1/3)-12^(1/3)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+b*12^(2/3)*a+12^(2/3)*b^2-12^(2/3)*b))^(1/2)*(6*x*b*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(1/3)-12^(1/3)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+b*12^(2/3)*a+12^(2/3)*b^2-12^(2/3)*b)^2*((3*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-3*12^(1/3)*b*a-3*12^(1/3)*b^2+3*12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)*x*b*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(1/3)/(((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-12^(1/3)*b*a-12^(1/3)*b^2+12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)/(6*x*b*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(1/3)-12^(1/3)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+b*12^(2/3)*a+12^(2/3)*b^2-12^(2/3)*b))^(1/2)*(((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-12^(1/3)*b*a-12^(1/3)*b^2+12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)*x*((a*x+a+b*x+b*x^3-x)/x)^(1/2)/(x*(6*x*b*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(1/3)-12^(1/3)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+b*12^(2/3)*a+12^(2/3)*b^2-12^(2/3)*b)*(12*x*b*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(1/3)+12^(1/3)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-b*12^(2/3)*a-12^(2/3)*b^2+12^(2/3)*b-I*3^(1/2)*12^(1/3)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-I*3^(1/2)*12^(2/3)*b*a-I*3^(1/2)*12^(2/3)*b^2+I*3^(1/2)*12^(2/3)*b)*(12*x*b*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(1/3)+12^(1/3)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-b*12^(2/3)*a-12^(2/3)*b^2+12^(2/3)*b+I*3^(1/2)*12^(1/3)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(2/3)*b*a+I*3^(1/2)*12^(2/3)*b^2-I*3^(1/2)*12^(2/3)*b)/(-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2)))^(1/2)/(3*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-3*12^(1/3)*b*a-3*12^(1/3)*b^2+3*12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)/(x*(a*x+a+b*x+b*x^3-x))^(1/2)

Something similar is obtained for the case b > 1.

Note: the command 'lprint' gives AASCII output suitable for inclusion as text. The on-screen output looks much better, but still needs 9 pages to display.
 
Could your program then, instead, find solution to:
a(x+1)+b(x^3+x)-x=0
a(x+1)+b(x^3+x)-x=0
for the same domains of a,b?

(Also for the mathematica, I'm having it offered by my univ, but unfortunately I learned today that I have to send a mail first to them in order to be able to download it.)
 
Questions about integrals should be posted in the Calculus & Beyond section.
 
ChrisVer said:
Could your program then, instead, find solution to:
a(x+1)+b(x^3+x)-x=0
a(x+1)+b(x^3+x)-x=0
for the same domains of a,b?

(Also for the mathematica, I'm having it offered by my univ, but unfortunately I learned today that I have to send a mail first to them in order to be able to download it.)

Yes, Maple can solve that equation---it just uses standard formulas for the solutions of a cubic equation, that you can find easily on-line. You can solve the equation yourself using Wolfram Alpha, which is like Mathematica lite and is freely available on the web. PF rules forbid me from writing the answer here.
 
Ray Vickson said:
I don't understand your statement that you " haven't been able to receive mathematica yet...". Does that mean that you have placed an order to buy Mathematica but it has not arrived yet, or what?

Anyway, I don't have access to Mathematica, so I did it in Maple instead. The results are exceedingly complicated, involving Elliptic functions of complex arguments, etc. Here is the code and result for 0 < b < 1:
> lprint(f); <---I call your function 'f'
1/(a*(1+1/x)+b*(1+x^2)-1)^(1/2)
J1:=int(f,x) assuming a<1,b>0,b<1: <---output suppressed by ending in ':'
lprint(J1);-4*(EllipticF(6^(1/2)*((3*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-3*12^(1/3)*b*a-3*12^(1/3)*b^2+3*12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)*x*b*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(1/3)/(((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)-12^(1/3)*b*a-12^(1/3)*b^2+12^(1/3)*b+I*3^(1/2)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(2/3)+I*3^(1/2)*12^(1/3)*b*a+I*3^(1/2)*12^(1/3)*b^2-I*3^(1/2)*12^(1/3)*b)/(6*x*b*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-4)/b)^(1/2))*b^2)^(1/3)-12^(1/3)*((-9*a+3^(1/2)*((4*a^3+39*a^2*b-12*a^2+12*a*b^2-24*a*b+12*a+4*b^3-12*b^2+12*b-

...
Hey Ray:

I think there's a mistake in line 57, the 31's chara...

Oh! Nevermind.

I had the wrong eyeglasses on.
 
tell me about your post details.

Dear,
Would you tell me about your thread details. I want to clear that. Thank you for your post.
 
Nevermind I'm getting weird results... For example I was expecting the cubic expression I gave above not to have positive solutions in this domains.
However a=0.25=b have solution at 1 and 0.618...
 
Back
Top