Evaluating Repeated Integral: cos y sin x

  • Thread starter Thread starter pfreemanjones
  • Start date Start date
  • Tags Tags
    Integration
pfreemanjones
Messages
1
Reaction score
0
Evaluate the following repeated integral:
[Pi/2]\int[/0][Pi/2]\int[/y]cos y sin x dx dy
 
Physics news on Phys.org
Have you ever encountered integration by iteration?

Also, you need to show your attempt at a solution.
 
This is
\int_{y=0}^{\pi/2}\int_{x= y}^{\pi/2}cos(y) sin(x)dy dx
= \int_{y= 0}^{\pi/2}cos(y)\left(\int_{x= y}^{2\pi} sin(x)dx\right)dy

Now, what is
\int_{x= y}^{\pi/2} sin(x)dx?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top