Expanding a function in terms of a vector

tissuejkl
Messages
8
Reaction score
0

Homework Statement


## L (v^2 + 2 \pmb{v} \cdot \pmb{ \epsilon } ~ + \pmb{ \epsilon} ^2)##, where ## \pmb{\epsilon}## is infinitesimal and ##\pmb{v}## is a constant vector (## v^2 ## here means ## \pmb{v} \cdot \pmb{v} ## ), must be expanded in terms of powers of ## \pmb{\epsilon} ## to give $$ L(v^2)+\frac{\partial L}{\partial v^2}\ 2 \ \pmb{v} \cdot \pmb{\epsilon} $$
where terms above the first order have been neglected.

Homework Equations

The Attempt at a Solution


I thought about using the Taylor expansion to expand L in terms of ## \pmb{\epsilon} ##, but that seems to work only if ##\epsilon ## were a scalar, so I'm not quite sure what to use to expand L.
 
Physics news on Phys.org
tissuejkl said:

Homework Statement


## L (v^2 + 2 \pmb{v} \cdot \pmb{ \epsilon } ~ + \pmb{ \epsilon} ^2)##, where ## \pmb{\epsilon}## is infinitesimal and ##\pmb{v}## is a constant vector (## v^2 ## here means ## \pmb{v} \cdot \pmb{v} ## ), must be expanded in terms of powers of ## \pmb{\epsilon} ## to give $$ L(v^2)+\frac{\partial L}{\partial v^2}\ 2 \ \pmb{v} \cdot \pmb{\epsilon} $$
where terms above the first order have been neglected.

Homework Equations

The Attempt at a Solution


I thought about using the Taylor expansion to expand L in terms of ## \pmb{\epsilon} ##, but that seems to work only if ##\epsilon ## were a scalar, so I'm not quite sure what to use to expand L.
What is your question? Are you trying to show that ## L (v^2 + 2 \pmb{v} \cdot \pmb{ \epsilon } ~ + \pmb{ \epsilon} ^2) \approx L(v^2)+\frac{\partial L}{\partial v^2}\ 2 \ \pmb{v} \cdot \pmb{\epsilon} ##?
 
Mark44 said:
What is your question? Are you trying to show that ## L (v^2 + 2 \pmb{v} \cdot \pmb{ \epsilon } ~ + \pmb{ \epsilon} ^2) \approx L(v^2)+\frac{\partial L}{\partial v^2}\ 2 \ \pmb{v} \cdot \pmb{\epsilon} ##?
Yes. Sorry, I should have made that clearer.
 
It looks to me like they're doing something like this:
##f(x + \Delta x) \approx f(x) + f'(x) \cdot \Delta x##
IOW, it's the Taylor expansion with terms only up to the first derivative.
 
Mark44 said:
It looks to me like they're doing something like this:
##f(x + \Delta x) \approx f(x) + f'(x) \cdot \Delta x##
IOW, it's the Taylor expansion with terms only up to the first derivative.
Is there a reason why the derivative in the second term should be the partial derivative ## \frac{\partial L}{\partial v^2} ##, then?
 
tissuejkl said:
Is there a reason why the derivative in the second term should be the partial derivative ## \frac{\partial L}{\partial v^2} ##, then?
The domain of L is a subset of ##\mathbb R##, not a subset of ##\mathbb R^n## with n>1, so L doesn't have partial derivatives. Maybe that's just a terrible notation for ##L'(\pmb v^2)##.

I would start like this and then just use the chain rule:
$$L(\mathbf v^2+2\pmb v\cdot\pmb\varepsilon+\pmb\varepsilon^2) = L(\pmb v^2)+\varepsilon_i\frac{\partial}{\partial \varepsilon_i}\bigg|_{\pmb 0} L(\pmb v^2+2\pmb v\cdot\pmb\varepsilon+\pmb\varepsilon^2).$$
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top