Expansion of nonregularized integral

baranas
Messages
14
Reaction score
0
Can anyone help me with the expansion of the integral
I_{\mu\nu}=\int d^{4}l\frac{4l_{\mu}l_{\nu}-g_{\mu\nu}l^2}{(l^{2}-B+i\epsilon)^{3}}.
I would like to know how it could be expanded into two terms
I_{\mu\nu}=\frac{1}{2}\int d^{4}l\frac{\partial^2}{\partial l^\mu \partial l^\nu}\frac{1}{l^{2}-B+i\epsilon}-g_{\mu\nu}\int d^{4}l\frac{B}{(l^{2}-B+i\epsilon)^{3}}-.
Another question is how can i calculate the first term to have result
-g_{\mu\nu}i\pi^{2}/2.
P.S. I am inexperienced with tensor calculations. I would be grateful for any help.
 
Last edited:
Physics news on Phys.org
It is all just a chain rule :)
\frac{1}{2}\partial_{\mu}\partial_{\nu}\frac{1}{l^{2}-\triangle+i\epsilon}=\partial_{\mu}\left[\frac{-l_{\nu}}{\left[l^{2}-\triangle+i\epsilon\right]^{2}}\right]
=\left[-g_{\mu\nu}\frac{l^{2}-\triangle}{\left[l^{2}-\triangle+i\epsilon\right]^{3}}+\frac{4l_{\nu}l_{\mu}}{\left[l^{2}-\triangle+i\epsilon\right]^{3}}\right]
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Back
Top