Expectation Inequality for Positive Random Variables

  • Thread starter Thread starter theperthvan
  • Start date Start date
  • Tags Tags
    Expectation Proof
theperthvan
Messages
182
Reaction score
0

Homework Statement


Prove that
E(X) > a.P(X>a)


Homework Equations


E(X) is expectation, a is a positive constant and X is the random variable.
(Note, > should be 'greater than or equal to' but I'm not too sure how to do it)


The Attempt at a Solution


Well I can show it easy enough for X~Exp(h), but of course this is not a general proof.
And I played around a bit with P(X>a)=1-F(a) where F is the cdf, but yeah. That's all I could really do. I just don't really get how the a factor comes in.
 
Physics news on Phys.org
Take P(x) to be a normal distribution centered at 0. The E(x)=0. Yet a.P(x>a) is clearly positive for a>0. There's something wrong with the problem statement. '>=' is fine for greater than or equal to.
 
Dick said:
Take P(x) to be a normal distribution centered at 0. The E(x)=0. Yet a.P(x>a) is clearly positive for a>0. There's something wrong with the problem statement. '>=' is fine for greater than or equal to.

Sorry, X is non-negative.
 
Ok then. Define E(X) as an integral and split the integral into the ranges 0-a and a-infinity. Drop the first integral and think about approximating the second by something smaller.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top