Expectation value of the expectation value

jinksys
Messages
122
Reaction score
0

Homework Statement


The expectation value of the position observable x is <x> = ∫ψ*xψdx. The expectation value of the expectation value, <<x>>=<x>, is still the expectation value...why?


Homework Equations





The Attempt at a Solution



All I can think of is that the expectation value is essentially an average, and the average of an average is the original average.

i.e.) A={2,8} The average is (2+8)/2 = {5}
The average of {5} = {5}.
 
Physics news on Phys.org
The expectation value is a number which <comes out> of the integral of the expectation value of the the expectation value.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top