Expectation value using ladder operators

T-7
Messages
62
Reaction score
0
I wonder if someone could examine my argument for the following problem.

Homework Statement



Using the relation

\widehat{x}^{2} = \frac{\hbar}{2m\omega}(\widehat{A}^{2} + (\widehat{A}^{+})^{2} + \widehat{A}^{+}\widehat{A} + \widehat{A}\widehat{A}^{+} )

and properties of the ladder operators, determine the expectation value <\widehat{x}^{2}> for the ground state of the simple harmonic well.

The Attempt at a Solution



<\widehat{x}^{2}> = \frac{\hbar}{2m\omega}\int^{+\infty}_{-\infty}u_{0}^{*}(\widehat{A}^{2} + (\widehat{A}^{+})^{2} + \widehat{A}^{+}\widehat{A} + \widehat{A}\widehat{A}^{+} )u_{0}.dx

I then argue

<br /> \left[ \widehat{A},\widehat{A}^{+}\right] = \widehat{A}\widehat{A}^{+} - \widehat{A}^{+}\widehat{A} = 1<br />
<br /> \Rightarrow \widehat{A}\widehat{A}^{+} = 1 + \widehat{A}^{+}\widehat{A}<br /> \Rightarrow \widehat{A}^{2} + (\widehat{A}^{+})^{2} + \widehat{A}^{+}\widehat{A} + \widehat{A}\widehat{A}^{+} = \widehat{A}^{2} + (\widehat{A}^{+})^{2} + 2\widehat{A}^{+}\widehat{A} + 1 = \widehat{A}^{2} + (\widehat{A}^{+})^{2} + 2n + 1 = \widehat{A}^{2} + (\widehat{A}^{+})^{2} + 1<br />

I am not quite clear if it is right that \widehat{A}^{+}\widehat{A} is equal to n (the eigenfunction number), which is zero here. Could someone comment on that, and on whether or not my treatment above is ok?

Well, if this is true, then

&lt;\widehat{x}^{2}&gt; = \frac{\hbar}{2m\omega}\int^{+\infty}_{-\infty}u_{0}^{*}( \widehat{A}^{2} + (\widehat{A}^{+})^{2} + 1)u_{0}.dx

and by exploiting the orthonormal properties, I argue that the first two integrals are zero (you have one eigenfunction multiplied by another and integrated over infinity), but the third integral is 1, and then

&lt;\widehat{x}^{2}&gt; = \frac{\hbar}{2m\omega}

Cheers!
 
Physics news on Phys.org
A^\dagger A is indeed the number operator, as
A^\dagger A |n&gt; = A^\dagger \sqrt{n} |n-1&gt; = n |n&gt;


------
Assaf
http://www.physicallyincorrect.com/"
 
Last edited by a moderator:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top