- #1

- 662

- 1

LetB: E-->X be a line bundle, with scructure group G and X has a CW -decomposition.

I am trying to understand why/how, if the structure group G of B is connected,

then any trivialization over the 0-skeleton of X can be extended to a trivialization

of the 1-skeleton.

I understand that for every k-cell f:D^k --.X (D^k is the k-disk) , the

pullback bundle is trivial (by contractibility of D^k), but I don't see how/why

the connectedness of G alllows us to extend a given trivialization from the

0-skeleton to the 1-skeleton.

There is also a mention of a canonical trivialization over the cells. Anyone

know what that is.?

Thanks.