Factor of 1/2 in Hubbard Hamiltonian?

thisisphysics
Messages
15
Reaction score
0
Homework Statement
Hey! So I'm reading an intro to QFT book this summer for self-enrichment, it's not for a class., So, the author goes through the Hubbard model a bit, but I'm confused about one of the steps of the derivation, and I'm sure I'm missing something super simple, so any help would be appreciated. This is the derivation: https://imgur.com/8OWuKvX.

So, my question is: what happens to the 1/2? I understand that U=V_iiii, and all the other elements of V are 0, so the sum collapses. The author is simply substituting the number operators in, but where would an extra factor of 2 come in to cancel the 1/2?
Relevant Equations
For those that can't open the link, the author essentially writes that the potential energy term of the Hamiltonian is equal to :

$$ \frac{1}{2} \sum_{ijkl\sigma\sigma'} c_{i\sigma}^{\dagger} c_{j\sigma'}^{\dagger} V_{ijkl} c_{k\sigma'}c_{l\sigma} $$ Then, we assume that the potential energy is constant and significant only when electrons are at the same site i.e. $$ U = V_{iiii}$$ So, finally, the potential energy term simplifies to $$U \sum_{i} n_{i, spin up} n_{i, spin down}$$

So, what happens to the factor of 1/2?
Above
 
Physics news on Phys.org
So, in the majority of cases with Hamiltonians like this the 1/2 term is to deal with the double counting of states. Look at the original summation term ##\sum_{ijkl\sigma\sigma'}##. Based on the anticommutation relations $$\lbrace c^{\dagger}_{i},c^{\dagger}_{j}\rbrace=0$$ $$\lbrace c_{i},c_{j}\rbrace=0$$ and $$\lbrace c_{i},c^{\dagger}_{j}\rbrace=\delta_{ij}$$ We see that the relevant terms that remain are $$c^{\dagger}_{i\uparrow}c^{\dagger}_{i\downarrow}c_{i\downarrow}c_{i\uparrow}+c^{\dagger}_{i\downarrow}c^{\dagger}_{i\uparrow}c_{i\uparrow}c_{i\downarrow}$$ Looking back at the anticommutations we see that this becomes $$c^{\dagger}_{i\uparrow}c^{\dagger}_{i\downarrow}c_{i\downarrow}c_{i\uparrow}+c^{\dagger}_{i\uparrow}c^{\dagger}_{i\downarrow}c_{i\downarrow}c_{i\uparrow}$$ So, the states are double counted and as stated the 1/2 takes care of that.
 
  • Love
Likes thisisphysics
SisypheanZealot said:
So, in the majority of cases with Hamiltonians like this the 1/2 term is to deal with the double counting of states. Look at the original summation term ##\sum_{ijkl\sigma\sigma'}##. Based on the anticommutation relations $$\lbrace c^{\dagger}_{i},c^{\dagger}_{j}\rbrace=0$$ $$\lbrace c_{i},c_{j}\rbrace=0$$ and $$\lbrace c_{i},c^{\dagger}_{j}\rbrace=\delta_{ij}$$ We see that the relevant terms that remain are $$c^{\dagger}_{i\uparrow}c^{\dagger}_{i\downarrow}c_{i\downarrow}c_{i\uparrow}+c^{\dagger}_{i\downarrow}c^{\dagger}_{i\uparrow}c_{i\uparrow}c_{i\downarrow}$$ Looking back at the anticommutations we see that this becomes $$c^{\dagger}_{i\uparrow}c^{\dagger}_{i\downarrow}c_{i\downarrow}c_{i\uparrow}+c^{\dagger}_{i\uparrow}c^{\dagger}_{i\downarrow}c_{i\downarrow}c_{i\uparrow}$$ So, the states are double counted and as stated the 1/2 takes care of that.
Thank you! This makes perfect sense.
 
No problem
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top