Field along vertical axis to hemispherical shell

AI Thread Summary
The discussion focuses on calculating the electric field at a point along the symmetry axis of a uniformly charged hemispherical shell. The approach involves using trigonometric relationships and integrating to find the vertical component of the electric field. Key questions raised include how to determine the correct sign for the integral's result and the interpretation of the square root in the denominator. It is clarified that the expression for the square root yields a positive quantity, specifically the absolute value of the difference between z and R. The conversation emphasizes the importance of careful reasoning in mathematical derivations.
user240
Messages
5
Reaction score
0

Homework Statement


A hemispherical shell has radius ##R## and uniform charge density ##\sigma##. FInd the electric field at a point on the symmetry axis, at position ##z## relative to the center, for any ##z## value from ##-\infty## to ##\infty##.

The Attempt at a Solution


Let ##\theta## be the angle from the horizontal axis and ##r## be the distance from a point on the vertical axis to a point on the shell. By the cosine rule,

$$r^2=R^2+z^2-2zRcos(\frac{\pi}{2}-\theta) = R^2+z^2-2zRsin(\theta)$$.

The charge on a ring of the shell is ##dQ=2\pi R^2cos(\theta)d\theta##. Because of the symmetry of the shell, the horizontal components of the field cancel along the center axis so to take only the vertical component, we'll put in a factor of ##cos(\phi)##. From the sine rule,

$$\frac{R}{sin(\phi)} = \frac{r}{sin(\frac{\pi}{2} - \theta)} = \frac{r}{cos(\theta)}$$.

Therefore,

$$cos(\phi) = (1-\frac{R^2}{r^2}cos^2(\theta))^{1/2}$$

$$= \frac{(r^2-R^2cos^2(\theta))^{1/2}}{r}$$

Now putting back in the expression for ##r## in the numerator,

$$cos(\phi)=\frac{(R^2+z^2-2zRsin(\theta)-R^2cos^2(\theta))^{1/2}}{r}$$

Factoring out ##R^2## and replacing ##1-cos^2(\theta)## with ##sin^2(\theta)##,

$$cos(\phi) = \frac{(R^2sin^2(\theta)-2zRsin(\theta)+z^2)^{1/2}}{r}$$

Now I can factor the numerator in two ways, so either I get

$$cos(\phi)= \frac{((z-Rsin(\theta))^2)^{1/2}}{r}=\frac{z-Rsin(\theta)}{r}$$

or

$$cos(\phi) = \frac{((Rsin(\theta)-z)^2)^{1/2}}{r}=\frac{Rsin(\theta)-z}{r}$$

(I guess this is the same as taking either positive or negative square root?)

If I go with the first option, the integral I get (omitting constants) is

$$\int_0^\frac{\pi}{2} \frac{cos(\theta)(z-Rsin(\theta))}{(z^2+R^2-2zRsin(\theta))^{3/2}}d\theta$$

whose solution is

$$\frac{z-R}{z^2\sqrt{z^2-2Rz+R^2}}+\frac{R}{z^2\sqrt{R^2+z^2}}$$

This seems to agree with the given solution - the second option would've given me a solution with second term being negative.

My first question is how do I know which to choose?

Second question is, the solution says that the first term is either positive or negative depending on whether ##z## is bigger or smaller than ##R##. However, since you can factor the denominator to get ##\sqrt{(z-R)^2}##, can you just argue that it's either positive or negative depending on whether you take the positive or negative root?

Finally, please point out any dodgy reasoning!

Thanks.
 

Attachments

  • hemisphericalshell.png
    hemisphericalshell.png
    2 KB · Views: 751
Physics news on Phys.org
user240 said:
However, since you can factor the denominator to get ##\sqrt{(z-R)^2}##, can you just argue that it's either positive or negative depending on whether you take the positive or negative root?
You can argue that ##\sqrt{(z-R)^2} = |z-R|.## This is equal to ##z - R## when ##z > R## and ##R-z## when ##z<R.## There is no "plus or minus" here. The radical is a positive quantity since it does not a have a negative sign in front of it.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top