Final angular velocity of a merry-go-round?

AI Thread Summary
The problem involves a child jumping off a stationary merry-go-round, and the goal is to find the final angular velocity of the merry-go-round after the jump. The initial angular momentum of the system is zero, and the conservation of angular momentum principle applies, where the child's linear momentum contributes to the final angular momentum of the merry-go-round. The child’s momentum is calculated as mass times velocity, while the perpendicular distance from the child's path to the center of rotation is crucial for determining angular momentum. Both the impulse method and direct angular momentum calculations can be used to find the final angular velocity, leading to the same result. Understanding the relationship between linear and angular momentum is key to solving this problem effectively.
nickr96
Messages
5
Reaction score
0

Homework Statement


A child (mc = 36 kg) is playing on a merry-go-round (mm = 225 kg, R = 2.9m) that is initially at rest. The child then jumps off in a direction tangent to the edge of the merry-go-round. The child has a speed of 5.0 m/s just before she lands on the ground. What is the magnitude of the final angular velocity of the merry-go-round?

Homework Equations


L = I*ω
Li,c + Li,m = Lf,c + Lf,m
I = (1/2)mmR2 for the merry-go-round.
I = mcR2 for the child.

The Attempt at a Solution


The initial angular momentum of the system is 0 so Li,c + Li,m = 0.
So Lf,c + Lf,m = 0
(1/2)mmR2 * ωf + mcR2 * ωf = 0
(1/2)mmR2 * ωf = - mcR2 * ωf

However when I plug the values for mass of the merry-go-round and the child as well as the radius for the merry-go-round I cannot seem to find a way to isolate ωf to one side of the equation, I just keep getting 0 rad/s.

 
Physics news on Phys.org
The angular velocity of the child is not very well specified since the child is not in circular motion around the selected axis of rotation. But that turns out not to matter. The angular momentum of the child can be calculated more directly. Angular momentum for a non-rotating body moving in a straight line is the product of momentum times the perpendicular offset from the selected axis of rotation.
 
jbriggs444 said:
The angular velocity of the child is not very well specified since the child is not in circular motion around the selected axis of rotation. But that turns out not to matter. The angular momentum of the child can be calculated more directly. Angular momentum for a non-rotating body moving in a straight line is the product of momentum times the perpendicular offset from the selected axis of rotation.

So I can find the final angular momentum for the child, and then plug it into the equation for the conservation of momentum to solve for the final angular velocity of the merry-go-round? So the momentum for him would be mass*velocity (momentum) and then I'm not sure what you mean by the perpendicular offset for the selected axis of rotation. The axis of rotation for the merry-go-round goes straight through the middle, and the child jumps off the edge in a direction tangent to that edge.
 
nickr96 said:

Homework Statement


A child (mc = 36 kg) is playing on a merry-go-round (mm = 225 kg, R = 2.9m) that is initially at rest. The child then jumps off in a direction tangent to the edge of the merry-go-round. The child has a speed of 5.0 m/s just before she lands on the ground. What is the magnitude of the final angular velocity of the merry-go-round?

Homework Equations


L = I*ω
Li,c + Li,m = Lf,c + Lf,m
I = (1/2)mmR2 for the merry-go-round.
I = mcR2 for the child.

The Attempt at a Solution


The initial angular momentum of the system is 0 so Li,c + Li,m = 0.
So Lf,c + Lf,m = 0
(1/2)mmR2 * ωf + mcR2 * ωf = 0
(1/2)mmR2 * ωf = - mcR2 * ωf

However when I plug the values for mass of the merry-go-round and the child as well as the radius for the merry-go-round I cannot seem to find a way to isolate ωf to one side of the equation, I just keep getting 0 rad/s.

You could use conservation of angular momentum, but you can also think of the child applying an impulse (torque) when it jumps off. As the child is not rotating or in a circular orbit, I think it's confusing to consider its angular velocity. There is, of course, a more fundamental definition/equation for angular momentum that it would be better to use.

To understand the angular momentum in this case, you could consider the following:

A particle moves at a constant velocity ##v## from the point (0, 1) along the line ##y=1##. Calculate its angular momentum about the origin and check that this is conserved as it follows its linear path.
 
nickr96 said:
So I can find the final angular momentum for the child, and then plug it into the equation for the conservation of momentum to solve for the final angular velocity of the merry-go-round? So the momentum for him would be mass*velocity (momentum) and then I'm not sure what you mean by the perpendicular offset for the selected axis of rotation. The axis of rotation for the merry-go-round goes straight through the middle, and the child jumps off the edge in a direction tangent to that edge.
The "perpendicular offset" is the distance from the child's path to the center of rotation. More precisely, you would look at the center of mass of the child and its distance from the center of rotation. Consider this distance as having two components, one in the direction of the child's momentum and one perpendicular to the child's momentum. The component that matters is the perpendicular one.

Or take the approach that PeroK has suggested. You can calculate the child's momentum. You know what linear impulse had to be applied to produce that momentum. You know the distance from the axis of rotation where that impulse was applied. So you can compute the associated change in angular momentum.

It ends up being the same calculation with either approach.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top