Find a, b, c for f(x) with x-intercepts at (0,0) & (8,0) and slope 16 at x=2

  • Thread starter Thread starter Optical24
  • Start date Start date
Optical24
Messages
1
Reaction score
0
I'm struggling with this problem:

Find numbers a, b, and c so that the graph of f(x) = ax^2 + bx + c has x-intercepts at (0,0) and (8,0), and a tangent with slope 16 where x=2

Can anyone help?
 
Physics news on Phys.org
Probably, but not until you show us that you've made an attempt at this problem.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top