Find Curvature of Ellipse: x=3*cos(t), y=4*sin(t)

  • Thread starter Thread starter soe236
  • Start date Start date
  • Tags Tags
    Curvature Ellipse
soe236
Messages
22
Reaction score
0
Find Curvature of Ellipse given x=3*cos(t) and y=4*sin(t) at the points (3,0) and (0,4)

Relevant equations: curvature at r(s) is k(s)=||dT/ds|| when r(s) is arc length parametrization and T is the unit tangent vector
I usually use the formula k(t)= (||r'(t) x r''(t)||)/||r'(t)||^3

So, r(t)=<3cost,4sint> and r'(t)= <-3sint,4cost> and r''(t)=<-3cost,-4sint>
do I just plug them in for k(t)? And I'm clueless about how to use the given points. Someone help please. Thank you
 
Physics news on Phys.org
Yes, you can just plug them into k(t). You'll need to do a cross product, so take the z component of the vectors to be zero. When you get k as a function of t, then you just need to go back and set (3*cos(t),4*sin(t))=(3,0) and figure out what t is for the first point. Ditto for the second.
 
Thanks, but I'm not sure I completely understand

This is what I got so far, please correct me if I'm wrong:
r'(t) x r''(t)= 12sint^2+12cost^2 = 12
||r'(t) x r''(t)||= sqrt(144) =12
||r'(t)||^3 = (9sint^2+16cost^2)^(3/2)

k(t)= 12/(9sint^2+16cost^2)^(3/2)

from what you've said, (3*cos(t),4*sin(t))=(3,0), so 3cost=3 => t= 0 or 2pi and 4sint=0 => t=0 or 2pi
similarly (3*cos(t),4*sin(t))=(0,4), so 3cost=0 => t=pi/2 or 3pi/2 and 4sint=4 => t=pi/2

Sry if this is a stupid question, but how do I apply that to k(t)?
 
soe236 said:
Thanks, but I'm not sure I completely understand

This is what I got so far, please correct me if I'm wrong:
r'(t) x r''(t)= 12sint^2+12cost^2 = 12
||r'(t) x r''(t)||= sqrt(144) =12
||r'(t)||^3 = (9sint^2+16cost^2)^(3/2)

k(t)= 12/(9sint^2+16cost^2)^(3/2)

from what you've said, (3*cos(t),4*sin(t))=(3,0), so 3cost=3 => t= 0 or 2pi and 4sint=0 => t=0 or 2pi
similarly (3*cos(t),4*sin(t))=(0,4), so 3cost=0 => t=pi/2 or 3pi/2 and 4sint=4 => t=pi/2

Sry if this is a stupid question, but how do I apply that to k(t)?

That looks ok to me. So the question is just asking you what is k(0) and k(pi/2), right? Those are the curvatures of the ellipse at the two given points.
 
Oh I see.. okay, thank you very much!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top