Find Rest Mass of Composite Particle After Collision

  • Thread starter Thread starter Joules6626
  • Start date Start date
  • Tags Tags
    Relativity
AI Thread Summary
A particle with rest mass m and kinetic energy 2mc^2 collides with a stationary particle of rest mass 2m, and the goal is to find the rest mass M of the resulting composite particle. The initial velocity of the moving particle is calculated to be v1 = sqrt(2/3)c. Conservation of momentum and energy principles are applied, but complications arise in isolating variables. Suggestions include using the total energy of the system before the collision and simplifying calculations by employing E=γmc^2. Ultimately, the problem can be solved with two equations and two unknowns, leading to a solution through algebraic manipulation.
Joules6626
Messages
11
Reaction score
0

Homework Statement


A particle of rest mass m and kinetic energy 2mc^c strikes and sticks to a stationary particle of rest mass 2m. Find the rest mass M of the composite particle


Homework Equations


E = mc^2 + KE
E^2 = (mc^2)^2 + (pc)^2
p = mv/sqrt(1-v^2/c^2)


The Attempt at a Solution


For finding the initial velocity of the moving particle:
2mc^2 = KE = mc^2/sqrt(1-v^2/c^2) - mc^2
m's cancel
and when solving for v, you get v1 = sqrt(2/3)c

To find M, I tried using conservation of momentum and energy.
p1 = p2
mv1/sqrt(1-v1^2/c^2) + 2m*0 = Mv2/sqrt(1-v2^2/c^2)
I can't seem to find a way to make the equation only have one unknown.
 
Physics news on Phys.org
Where's your conservation of energy equation?
 
E1 = E2
(mc^2)^2 + (cmv1/sqrt(1-v1^2/c^2))^2 = (Mc^2)^2 + (cMv2/sqrt(1-v2^2/c^2))^2
 
That's not quite right. You forgot the energy of the stationary mass. Also, to simplify the algebra, you might want to use E=γmc2 rather than breaking out the rest energy and momentum contributions separately.
 
so it would be
(mc^2)^2 + (cmv1γ1) + 2mc^2 = (Mc^2)^2 + (cMv2γ2)^2?
how would that give me a function of just v2 or M?
 
No, that's still not right. It doesn't work out unit-wise. You have quantities equal to E2, not E. Plus you're making it more complicated than it needs to be. You can calculate the total energy of the system before the collision just by adding up a few quantities you were given.

You have two equations and two unknowns (M and v2). Now it's just a bunch of algebra to solve for them.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top