Find the Fourier cosine series of f(x)=x(Pi+x)

Nallyfish
Messages
6
Reaction score
0
Homework Statement
Find the Fourier cosine series representation of
g(\chi) = \chi (\pi + \chi)
on the interval (0,\pi)


The attempt at a solution
Okay so I've got
a0=\frac{1}{\pi}\int\chi(\pi+\chi)d\chi

=\frac{5\pi^{3}}{6}

an=\frac{1}{\pi}\int\chi(\pi+\chi)cos(n\chi)d\chi for n\geq1

But I'm not quite sure where to go from there
 
Physics news on Phys.org
Distribute the χ so you have the integral of the sum of two terms. This can be separated into two integrals (linear property of integration).

Both of these integrals can be solved using integration by parts.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top