Find the length of the curve r = cos^2(theta/2)

  • Thread starter Thread starter Manni
  • Start date Start date
  • Tags Tags
    Curve Length
Manni
Messages
42
Reaction score
0
Find the length of the curve r = cos^2(theta/2)

I'm hopelessly lost.
 
Physics news on Phys.org
consider a simpler case y=x^2 and what is the length from x=0 to x=10?

dlen = (dx*dx + dy*dy) ^ (1/2) based the pythagorian theorem

and dy= 2xdx

so dlen = ( dx*dx + 4x^2 dx*dx ) ^ (1/2) = (1 + 4x^2) dx

then integrate over x to get the solution

In your equation you must consider polar coordinates so that the dlen element is:

dlen = ( dr^2 + (r*dtheta)^2 ) ^ (1/2)

plugin for dr and r and integrate over theta to get the length
 
Thanks a lot, makes more sense! Forgive my ignorance by the way.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top