Finding Eigenvalues and Wave Function in a Basis of Orthonormalized Vectors

Lolek2322
Messages
3
Reaction score
0

Homework Statement


Eigenvalues of the Hamiltonian with corresponding energies are:
Iv1>=(I1>+I2>+I3>)/31/2 E1=α + 2β
Iv2>=(I1>-I3>) /21/2 E2=α-β
Iv3>= (2I2> - I1> I3>)/61/2 E3=α-β

Write the matrix of the Hamiltonian in the basis of the orthonormalized vectors I1>, I2>, I3>

If in t=0, system is in the state I1>, what is the wave function in t?

Homework Equations


Hij = <ilHlj>

The Attempt at a Solution


Although I know that energy is the eigenvalue of the Hermitian operator, I am not sure how to incorporate that in this certain problem. I have used mentioned equation for previous problems, but I always had the form of the operator. With only eigenvectors and eigenvalues I am stuck and don't even know how to begin solving this.
 
Last edited:
Physics news on Phys.org
There seems to be a part of the question that is missing. Can you write it out fully?
 
DrClaude said:
There seems to be a part of the question that is missing. Can you write it out fully?
I appologize. I have written it now
 
One way to go about this is to start by writing the Hamiltonian in the |v1>, |v2>, |v3> basis, then applying the proper transformation operation to "rotate" the Hamiltonian to the |1>, |2>, |3> basis.
 
But unfortunately I do not know how to do that
 
The straightforward way to do it is
1. Find |1>, |2> and |3> as linear combinations of |v1>, |v2> and |v3> and verify that they are orthonormal.
2. Note that H|v1> = (α + 2β) |1> and get similar expressions for H operating on the other two v's.
3. Calculate things like < 1 | H | 2 > using the linear combinations from item 1 and substituting from item 2.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top