VinnyCee
- 486
- 0
Homework Statement
Given...
v\left(z,\,t\right)\,=\,5\,e^{-\alpha\,z}\,sin\left(4\pi\,\times\,10^9\,t\,-\,20\pi\,z\right)
where z is distance (m), find...
(a) Frequency
(b) Wavelength
(c) Phase Velocity
(d) At z = 2m, the amplitude is 1 [V], Find the attenuation constant (\alpha).
Homework Equations
f\,=\,\frac{1}{T}
y\left(x,\,t\right)\,=\,A\,cos\left(\frac{2\pi\,t}{T}\,-\,\frac{2\pi\,x}{\lambda}\,+\,\phi_0\right)
u_p\,=\,f\,\lambda
The Attempt at a Solution
(a)Using the first term (\frac{2\pi\,t}{T}) in the argument to the cosine in the general form above...
\frac{2\pi}{T}\,=\,4\pi\,\times\,10^9\,\,\longrightarrow\,\,T\,=\,\frac{2\pi}{4\pi\,\times\,10^9}\,=\,0.5\,\times\,10^{-9}
f\,=\,\frac{1}{T}\,=\,\frac{1}{0.5\,\times\,10^{-9}}\,=\,2\,\times\,10^9\,=\,2\,Ghz(b)
Using the second term (-\,\frac{2\pi\,x}{\lambda}) in the argument to the cosine in the general form above...
\frac{2\pi}{\lambda}\,=\,20\pi\,\,\longrightarrow\,\,\lambda\,=\,\frac{2\pi}{20\pi}\,=\,\frac{1}{10}\,=\,0.1\,m(c)
u_p\,=\,f\,\lambda\,=\,\left(2\,\times\,10^9\right)\,(0.1)\,=\,200,000,000\,\frac{m}{s}(d)
1\,=\,5\,e^{-2\,\alpha}\,sin\left(4\pi\,\times\,10^9\,t\,-\,40\pi\right)
5\,e^{-2\alpha}\,=\,1\,\,\longrightarrow\,\,-2\alpha\,=\,ln\left(\frac{1}{5}\right)\,\,\longrightarrow\,\,\alpha\,=\,0.8047
Right?
Last edited: