Finding freq., Wavelentgh, Phase Velocity, and attenuation constant

VinnyCee
Messages
486
Reaction score
0

Homework Statement



Given...

v\left(z,\,t\right)\,=\,5\,e^{-\alpha\,z}\,sin\left(4\pi\,\times\,10^9\,t\,-\,20\pi\,z\right)

where z is distance (m), find...

(a) Frequency

(b) Wavelength

(c) Phase Velocity

(d) At z = 2m, the amplitude is 1 [V], Find the attenuation constant (\alpha).

Homework Equations



f\,=\,\frac{1}{T}

y\left(x,\,t\right)\,=\,A\,cos\left(\frac{2\pi\,t}{T}\,-\,\frac{2\pi\,x}{\lambda}\,+\,\phi_0\right)

u_p\,=\,f\,\lambda

The Attempt at a Solution

(a)

Using the first term (\frac{2\pi\,t}{T}) in the argument to the cosine in the general form above...

\frac{2\pi}{T}\,=\,4\pi\,\times\,10^9\,\,\longrightarrow\,\,T\,=\,\frac{2\pi}{4\pi\,\times\,10^9}\,=\,0.5\,\times\,10^{-9}

f\,=\,\frac{1}{T}\,=\,\frac{1}{0.5\,\times\,10^{-9}}\,=\,2\,\times\,10^9\,=\,2\,Ghz(b)

Using the second term (-\,\frac{2\pi\,x}{\lambda}) in the argument to the cosine in the general form above...

\frac{2\pi}{\lambda}\,=\,20\pi\,\,\longrightarrow\,\,\lambda\,=\,\frac{2\pi}{20\pi}\,=\,\frac{1}{10}\,=\,0.1\,m(c)

u_p\,=\,f\,\lambda\,=\,\left(2\,\times\,10^9\right)\,(0.1)\,=\,200,000,000\,\frac{m}{s}(d)

1\,=\,5\,e^{-2\,\alpha}\,sin\left(4\pi\,\times\,10^9\,t\,-\,40\pi\right)

5\,e^{-2\alpha}\,=\,1\,\,\longrightarrow\,\,-2\alpha\,=\,ln\left(\frac{1}{5}\right)\,\,\longrightarrow\,\,\alpha\,=\,0.8047

Right?
 
Last edited:
Physics news on Phys.org
How did you eliminate 't' in part d?
 
There is no "t" in (d). The "attenuation" constant is the rate at which the magnitude of the wave degrades- and that depends entirely upon the coefficient of the cosine term, 5e^{-\alpha z}. And here, we are given that z= 2.
 
What about the sin term. 1= 5xexp(-alpha x z) x sin term which contains t?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top