Finding Momentum and Uncertainty in Quantum Mechanics Problem 1.17

asdf60
Messages
81
Reaction score
0
Problem 1.17 in griffiths gives, at time t = 0, the state psi =A(a^2-x^2) for -a to a, and 0 otherwise. It asks then to find the expected value of momentum p at 0 and also the uncertainty in p. How do I do this? The only way momentum is defined is md<x>/dt, and since the state is only for time t, there seems to be no way to do this.

I know that if i take Fourier transform the wave function i'll get the expected momentum, but I don't think that's what the problem wants me to do. Is there a simpler way?
 
Physics news on Phys.org
never mind, I'm an idiot.
 
Glad we could help. :biggrin:
 
Tom Mattson said:
Glad we could help. :biggrin:
:smile: :smile: :smile:
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top