Finding Omega: Evaluating sin^(-1)(3) on the Complex Plane

blueyellow

Homework Statement



if z= sin (omega) find an expression for omega as a function of z that can be used to evaluate all possible values of sin^(-1) (3). Plot these values on the complex plane

The Attempt at a Solution



z= sin (omega)
3= sin (omega)

I don't know how to proceed from here. Please help
 
Physics news on Phys.org


blueyellow said:

Homework Statement



if z= sin (omega) find an expression for omega as a function of z that can be used to evaluate all possible values of sin^(-1) (3). Plot these values on the complex plane

The Attempt at a Solution



z= sin (omega)
3= sin (omega)

I don't know how to proceed from here. Please help

For any w (real or complex) we have sin(w) = (1/2)*[exp(i*w) - exp(-i*w)], where i = sqrt(-1).

RGV
 


Actually, I believe the identity is \sin x = \frac{-i(e^{ix} - e^{-ix})}{2}.
 


Or, equivalentlty,
\frac{e^{ix}- e^{-ix}}{2i}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top