Finding rate of change of shadow problem.

ugeous
Messages
23
Reaction score
0
Question: A 1.85 m tall man is walking toward a 12 m tall street light at night at a rate of 2.2 m/s. How fast is the length of his shadow changing when he is 12 m from the street light?

so, using similar triangles, i got that (x+y)/12 = x/1.85. I can rearrange this into x= or y=, but then I don't see how i can find the derivative of it (ex. x = (1.85x+1.85y)/12 -> finding derivative will eliminate x and y). Any help will be greatly appreciated.

Thanks!
 
Physics news on Phys.org
The derivative of that is (dx/dt+dy/dt)/12=dx/dt/1.85. The problem statement tells you what one of those derivatives is. Which one and what's it's value?
 
Oh I think I got it. So just to make sure: I solve for dx/dt plugging in -2.2 for dy/dt correct?
 
ugeous said:
Oh I think I got it. So just to make sure: I solve for dx/dt plugging in -2.2 for dy/dt correct?

Exactly.
 
Thanks a lot Dick!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top