Finding the Derivative of x(3-x^2)^-2

  • Thread starter Thread starter Oscar Wilde
  • Start date Start date
  • Tags Tags
    Derivative
Oscar Wilde
Messages
48
Reaction score
0

Homework Statement



I am supposed to find the derivative of: x(3-x^2)^-2

Homework Equations



The chain rule

The Attempt at a Solution



Well I feel that I am good at using the chain rule but something tells me I can't use it here, because when I do, I only get about half of the answer.

But anyway, I multiplied x by -2 , which I multiplied by the group (3-x^2)^-3. Then I multiplied that term by the derivative of the first group, (3-x^2), and got: 4x^2 * (3-x^-2)^-3

however, the right answer is listed as: 4x^2 *(3-x^2)^-3 + (3-x^2)^-2

for some reason I don't think the chain rule applies to this problem? or perhaps I am doing it wrong... I would appreciate any help or explanation
 
Physics news on Phys.org
Use the product rule ;-) (or quotient rule, if you prefer) It generates two terms, but you only found one of them.
 
Like diazona says, the product rule (combined with your chain rule) shall set you free! :smile:

If it was simply

f(x)=(3-x^2)^{-2}

then the chain rule would have sufficed.

However, you have two terms involving x that are multiplied with each other so you also need to incorporate the product rule (or quotient rule for this particular case, but I'd personally prefer the product rule).
 
Thank you very much guys! I see where I went wrong. I appreciate your help, thanks again :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top