Finding the Dimension and Basis of the Matrix Vector space

nautolian
Messages
34
Reaction score
0

Homework Statement


The set K of 2 × 2 real matrices of the form [a b, -b a] form a field with the usual operations.
It should be clear to you that M22(R) is a vector space over K. What is the dimension of M22(R) over K? Justify your answer by displaying a basis and proving that the set displayed is actually a basis.


Homework Equations





The Attempt at a Solution



I don't think there can be a basis over the field K, because no linear combination of the matrices [a b, -b a] with any M22 can form, say [1 0, 0 0]. Which would be in M22. Any help would be greatly appreciated. Thanks!
 
Physics news on Phys.org
Could you do a combination say (0 a, 0 -b) (0 -b, 0 a), (a 0, b 0), (-b 0, a 0)? Could this form a basis? Or does it have to be real integers? thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top