Finding the number of microstates

  • Thread starter Dassinia
  • Start date
  • Tags
    Microstates
In summary, the conversation is about finding the number of accessible microstates for a system with 4 energy levels and 5 particles distributed among them. The total energy of the system is 12E1 and there are 450 possible microstates. The conversation also discusses the concept of degeneracy and the different ways in which particles can be arranged in energy levels. The conversation ends with the individual finding 6 possible ways to achieve a total energy of 12E1 and successfully solving the problem.
  • #1
Dassinia
144
0
Hello, I don't understand how we can find the number of accessible microstate

Homework Statement



A system has 4 levels of energy, E1 E2 E3 & E4 with degeneracies of 1 , 3, 4 and 5. And we have E2=2E1, E3=3E1 ..

We distribute 5 same particles on the different levels of energy.

Several particles can occupy the same microstate.

The total energy of the system is 12E1.

There are 450 accessible microstates but I don't get it

Thanks!

Homework Equations





The Attempt at a Solution

 

Attachments

  • deg.png
    deg.png
    822 bytes · Views: 556
Physics news on Phys.org
  • #2
What is the energy of the state in the picture ?
 
  • #3
13*e1 ?
 
  • #4
So this state is NOT in the 450. There aren't too many ways to get E=12e1 with 5 particles. I don't think there is a smart way to find them. Once there is a list of them, the particles can be placed in the degenerate energy levels in a number of ways, for which there is an expression. Adding up these numbers is the exercise. Some work, but doable, I think.
 
  • #5
Oh, thank you !
There is an expression for what ?
 
  • #6
Well, take your picture. There are 5 particles and the sum of energies is 13 x E1, so it doesn't qualify for the answer, but as an example: let's count the number of ways we can arrange these particles over the four energy levels.

- - -

Now I think we need to have some more information to do this right. If this is a course in statistics with numbered lottery balls (it is not, I think), the situation is different from e.g. a course in quantum mechanics with bosons that are indistinguishable. My story continues below with that last assumption. The context makes it higly probable, the answer justifies it.

Furthermore, your formulation of the problem causes some confusion: you want to count the number of accessible microstates, and a little further it says: several particles can occupy the same microstate.
I propose to use the word state (or eigenstate) in the latter case: a solution with a certain energy associated. Several solutions can have the same energy.
And the word microstate is for a unique distribution of the particles over the states.

There is an expression for what ?
Well, for counting the number of possible microstates, given a certain distribution of the particles over the energy levels! Something to do with factorials, permutations, and so on. Either they are in the section preceding the exercise in your book, or you can check out e.g. http://www.pma.caltech.edu/~mcc/Ph127/a/Lecture_13.pdf

A few casual observations: if we have five big bottles for five lotto balls (that would be all particles in level 4, so an energy of 20 x E1, NOT in our cherished 450) we get how many microstates? Yes, 5^5 (five possibilities for ball 1, idem 2,3,4,5). Big number. You know this.
Same exercise with indistinguishable steel balls: Naive approach: Big number divided by the number of permutations of the five balls (5!=120) , perhaps ? No way: quotiënt is not an integer! Took me some time to figure out what the link mentions under bosons. (That's why this response took a while...)

- - -

Back to your picture:
E5: 5 ways
E2: 3 ways
E3 is the hard one: particle 1 4 ways, particle 2 4 ways also, so 16 times, but now we did some double counting, for which we have to correct: if both are in the same state it's ok, the others were double counted, so 4 + (16 - 4)/2 = 10. Phew...this gets awkward, so understanding the 'trick' in the link is a life saver here...
E1 is a giveaway: only one way to do this.
5 x 3 x 10 x 1 would be my guess for the number of possible microstates in your drawing. Pretty large number.

Your exercise:
Still a lot of work. How many ways have you found to get n1 + n2 * 2 + n3 * 3 + n4 * 4 = 12 ? Persevere and the 450 is yours! Important concept, nice exercise.
 
  • #7
I rfound 6ways to obtain 12e1 but i don't get to 450.
For exemple 2e1+2e3+e4
 
  • #8
I get 6 ways too. Working out the possible states is pretty hard work. I gave an example for the case in the picture. Could you give me one for one of the 6 ways ?
In other words: what do you get (in detail...) ?
 
  • #9
For example i have 4e2+e4 so for e4 5 possibilities , 4 particle on e2 hmm is it 15 possibilities so 15*5 ? I have a problème withbthe possibilities when i have 4 partciles in e2, 3 in e3 and 3 in e2 to find micro states in 3 configurations
 
Last edited:
  • #10
Solved ! Thannk you for your explanations !
 
Last edited:
  • #11
Using the (ni + g - 1)! /(ni! * (g-1)!) expression ? (ni the number of particles at an energy level e_i, g the degeneracy)
 

Related to Finding the number of microstates

1. How do you calculate the number of microstates?

To calculate the number of microstates, you can use the formula N = nk, where N represents the total number of microstates, n represents the number of possible values for each microstate, and k represents the number of microstates in the system.

2. What is the significance of finding the number of microstates?

Finding the number of microstates is important in understanding the macroscopic properties of a system. It helps in predicting the behavior of a system and determining its thermodynamic properties such as entropy, temperature, and energy.

3. Can the number of microstates change?

The number of microstates can change if there is a change in the number of particles or energy in a system. It can also change if the system undergoes a phase transition or a chemical reaction.

4. How does the number of microstates relate to entropy?

The number of microstates is directly proportional to entropy. As the number of microstates increases, the entropy of the system also increases. This is because there are more possible ways for the system to be arranged, leading to a higher degree of disorder.

5. Can the number of microstates be infinite?

In theory, the number of microstates can be infinite. However, in real-world systems, it is limited by factors such as the size of the system and the precision with which we can measure its states. Therefore, for practical purposes, the number of microstates is usually a very large but finite number.

Similar threads

  • Introductory Physics Homework Help
Replies
22
Views
242
  • Introductory Physics Homework Help
Replies
18
Views
2K
  • Introductory Physics Homework Help
Replies
5
Views
2K
  • Introductory Physics Homework Help
Replies
5
Views
3K
Replies
4
Views
3K
  • Introductory Physics Homework Help
Replies
2
Views
1K
  • Thermodynamics
Replies
7
Views
1K
  • Introductory Physics Homework Help
Replies
7
Views
2K
  • Quantum Physics
Replies
3
Views
1K
Replies
12
Views
2K
Back
Top