Finding the square root of a matrix

smerhej
Messages
20
Reaction score
0

Homework Statement



Let A be the matrix:
-5 -3
18 10

Find an invertible matrix X so that XAX-1 is diagonal. Use this to find a square root of the matrix A.

Homework Equations



DetA - xI
(A-\lambdaI)v = 0

The Attempt at a Solution



So, I found DetA- xI, which gave me the eigenvalues 4 and 1. I found the eigenvectors for each value, giving me X =
-1 -1
3 2

Now what confuses me is finding the square root of A. I understand that XD1/2X-1 will give me that, so would I just multiply X by D1/2 , and then by X-1? I tried that, and it gave me A=

-1 -1
6 4
 
Physics news on Phys.org
If you multiply your final matrix by itself, what do you get?
 
The original matrix A! Thank you! I don't know how I didn't think of that to check my work..
 
:smile:
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top