Finding the work done by a force

stevecallaway
Messages
21
Reaction score
0

Homework Statement


Find the work done by the fore F(x,y,z)=xy i = yz j + zx k

Homework Equations



z=t^3, y=t^2 x=t
0<=t<=1

The Attempt at a Solution


I don't understand how to get started because I've got no r(t) so I have nothing to dot product the F(x(t),y(t),z(t)) once the substitution occurs. Does anyone know how to get to the r(t)?
 
Physics news on Phys.org
r(t) = x i + y j + z k= t i + t^2 j + t^3 k.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top