Finding Total Charge from E-field

AI Thread Summary
The discussion focuses on calculating the total charge from a given radial electric field using Gauss's law and charge density. The initial attempts to find the total charge resulted in a conclusion of zero, raising questions about the charge density's behavior at infinity. Participants debated the necessity of evaluating the limit as the radius approaches infinity and whether the integral diverges. Ultimately, it was confirmed that the total charge indeed equals zero, as the charge density changes sign, leading to a cancellation of contributions. The integral setup was clarified, affirming that the calculations were correct and consistent with the expected results.
Marcus95
Messages
50
Reaction score
2

Homework Statement


A static charge distribution has a radial electric field of magnitude
##E = \alpha \frac{e^{-\lambda r}}{r} ##
where λ and α are positive constants. Calculate the total charge of the distribution.

Homework Equations


Gauss's law ##Q/\epsilon_0 = \int \vec{E} \cdot d\vec{S}##
##\rho/\epsilon_0 = \nabla \cdot \vec{E} ##

The Attempt at a Solution


I have tried two ways to go about this problem, without success. First I tried using Gauss's law, placing a Gaussian sphere of radius a on the distribution:
##Q/\epsilon_0 = \int \vec{E} \cdot d\vec{S} = 4\pi\alpha (ae^{-\lambda a}) ##
We should now find the total charge by letting ## a \rightarrow \infty ##, but ##\lim_{a \rightarrow \infty} ae^{-\lambda a} = 0##, giving ##Q = 0## which i thought cannot be right.*

My second method involved finding the charge distribution
##\rho/\epsilon_0 = \nabla \cdot \vec{E} = \alpha \frac{e^{-\lambda r}(1-\lambda r)}{r^2} ## but this gives an integral which is divergent!

*I have done some further thinking and realized that ##Q_{tot} = 0## might be the answer, because the charge density changes sign at ##r = 1/\lambda## so the total net charge could as well be zero.

However, how is it possible that the volume integral of #\rho# is divergent then? Or is it not?
 
Physics news on Phys.org
Marcus95 said:
My second method involved finding the charge distribution
##\rho/\epsilon_0 = \nabla \cdot \vec{E} = \alpha \frac{e^{-\lambda r}(1-\lambda r)}{r^2} ## but this gives an integral which is divergent!
Make sure you are setting up the integral correctly. Are you using the correct form for the volume element of the integral?
 
  • Like
Likes Marcus95 and Charles Link
Isn't E = k Q / R^2 (spherical charge distribution)?
Then 2 E R dR = k dQ.
The integral doesn't diverge unless (1 / R) appears in the result at R = 0.
 
J Hann said:
Isn't E = k Q / R^2 (spherical charge distribution)?
Yes.
Then 2 E R dR = k dQ.
This doesn't look right. From E = k Q / R2 you have k Q = R2 E. If you take the differential of this, you need to note that E is a function of R.

But I don't see the point of doing this. kQ = R2E already tells you how much charge is contained in a sphere of radius R. So, taking the limit as R goes to infinity will give you the total charge of the system. This is essentially what @Marcus95 did in his first method of finding Qtot.
 
TSny said:
Yes.
This doesn't look right. From E = k Q / R2 you have k Q = R2 E. If you take the differential of this, you need to note that E is a function of R.

But I don't see the point of doing this. kQ = R2E already tells you how much charge is contained in a sphere of radius R. So, taking the limit as R goes to infinity will give you the total charge of the system. This is essentially what @Marcus95 did in his first method of finding Qtot.

I tend to agree, but why does R need to go to infinity?
Was this implied in the problem?
 
Also, doesn't L'Hopital's give a finite value for E as R goes to infinity?
(It does appear to be zero)
 
J Hann said:
I tend to agree, but why does R need to go to infinity?
Was this implied in the problem?
The charge density extends to infinity. So, to get the total charge you have to include all the charge out to infinity.
 
J Hann said:
Also, doesn't L'Hopital's give a finite value for E as R goes to infinity?
(It does appear to be zero)

##E = \alpha \frac{e^{-\lambda r}}{r} ##

L'Hopital gives zero for the limit, but you don't really need L'Hopital. The numerator goes to zero while the denominator goes to infinity as ##r## goes to infinity.
 
TSny said:
Make sure you are setting up the integral correctly. Are you using the correct form for the volume element of the integral?
My integral is:
##Q = \int_{r=0}^\infty \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} \alpha\epsilon_0 \frac{e^{-\lambda r}(1-\lambda r)}{r^2} \times r^2sin\theta d\theta dr d\phi ##
which gives:
##Q = 4\phi \alpha \epsilon_0 \int_{r=0}^\infty e^{-\lambda r}(1-\lambda r) dr =4\phi \alpha \epsilon_0 [re^{-\lambda r}]_0^\infty = 0 ##
so it all works out! Thanks a lot!
 
  • #10
Marcus95 said:
My integral is:
##Q = \int_{r=0}^\infty \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} \alpha\epsilon_0 \frac{e^{-\lambda r}(1-\lambda r)}{r^2} \times r^2sin\theta d\theta dr d\phi ##
which gives:
##Q = 4\phi \alpha \epsilon_0 \int_{r=0}^\infty e^{-\lambda r}(1-\lambda r) dr =4\phi \alpha \epsilon_0 [re^{-\lambda r}]_0^\infty = 0 ##
so it all works out! Thanks a lot!
OK. In the second equation, the ##\phi## should be ##\pi##??

Otherwise, looks good.
 
Back
Top