Finite difference method for even potential in QM

Nemanja989
Messages
78
Reaction score
2
Hello to everyone,

while solving homework course Nanotechnology and Nanocomponents, I have encountered a problem in FD method that is applied in even potential. In my homework assignment it is explicitly said that it must be done only in x>0 part of the domain, where my problem starts with boundary conditions. Previously we have worked FD method in class but in general case, and we used conditions that wave function vanishes at the end points. The rest of the problem I have wrote and attached to this message as a pdf.
 

Attachments

  • n.pdf
    n.pdf
    109.3 KB · Views: 263
Physics news on Phys.org
I would be grateful if somebody could help me out with this problem and explain the steps that should be taken in order to solve it.Thank you very much in advance.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top