Finite simple group with prime index subgroup

asllearner
Messages
2
Reaction score
0

Homework Statement



If G is a finite simple group and
H is a subgroup of prime index p
Then
1. p is the largest prime divisor of \left|G\right| (the order of G)
2. p2 doesn't divide \left|G\right|

I think I have this proved, but want to confirm my reasoning is sound.
this problem is from intro to group theory by rose. it is problem 192 on p 75 in the chapter on group actions on sets, including embedding finite groups in symmetric groups.

thanks in advance for help

Homework Equations



related theorem: if H is of finite index in G, then G/HG, where HG is the largest normal subgroup of G contained in H, (that is the core of H in G) can be embedded in the symmetric group on \left|G: H \right| objects.

The Attempt at a Solution



the core must be = 1 or G since G is simple (yes?).
and it can't be G since G isn't contained in H.
..
the theorem above implies, since HG is going to be 1 , that G/HG = G can be embedded in S\left|G: H \right|, which has order p!.

from here I think I am supposed to assume that there is a prime q that divides G. but then it would divide p!, and that means it would have to be less that p.

I believe this implies conclusion 1. Yes?
As to part 2, ...
Since the core is normal, the subgroup isomorphism theorem (I think) gives
\left|G/ H_{G}\right|= \left[G<img src="/styles/physicsforums/xenforo/smilies/arghh.png" class="smilie" loading="lazy" alt=":H" title="Gah! :H" data-shortname=":H" />\right] \left[H<img src="/styles/physicsforums/xenforo/smilies/arghh.png" class="smilie" loading="lazy" alt=":H" title="Gah! :H" data-shortname=":H" />_{G}\right] = p \left[H<img src="/styles/physicsforums/xenforo/smilies/arghh.png" class="smilie" loading="lazy" alt=":H" title="Gah! :H" data-shortname=":H" />_{G}\right]
therefore, since the core is trivial.
\left|G\right|= p \left[H\right]
now the order of G has to be less that p!
so the order of H has to less that p-1!, which means that p can't divide it, so p2 can't divide G.

Did I get it, or have I fooled myself?
 
Physics news on Phys.org
For part 2, you are thinking too hard. If p is prime, and you know that |G| divides p!, can p^2 divide |G|?
 
duh! Thinking too hard is what I do. I think.

(I was fooled because I was following copying the steps of a related proof on the same page...)

otherwise proof ok?

thanks tads for the reply...much obliged!
 
Assuming the "related theorem" you cite, yes, your proof is correct.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top