Flux in a Wire Loop w/ a Magnetic Field

AI Thread Summary
The discussion focuses on a physics problem involving a wire loop in a magnetic field, where the loop is being pulled at a constant velocity. The potential difference between points X and Y is calculated using the formula E = -Blv, yielding -3V, with clarification needed on the length used. The direction of the induced current is determined to be counterclockwise based on Lenz's law. The force required to maintain the loop's speed is calculated as -2.4 N, raising questions about the significance of the negative sign in relation to direction. Finally, the power required to keep the loop moving is found to be 7.2 W, with uncertainty regarding the interpretation of negative values in this context.
twotaileddemon
Messages
258
Reaction score
0

Homework Statement



Diagram: http://img.photobucket.com/albums/v696/talimtails/PP24.jpg

A wire loop, 2 by 4 meters, of negligible resistance, is in the plane of the page with its left end in a uniform .5 T magnetic field directed into the page (The field is zero outside this region). A 5-ohm resistor is connected between points X and Y. The loop is being pulled to the right with a constant velocity of 3 m/s. Make all determinations for the time that the left end of the loop is still in the field, and points X and Y are not in the field.

a. Determine the potential difference between points X and Y.
b. On the figure show the direction of the current induced in the resistor.
c. Determine the force required to keep the loop moving at 3 m/s.
d. Determine the rate at which work must be done to keep the loop moving at 3 m/s.

Homework Equations



E = -Blv
V = IR
F = qvB = qE = qV/r
F = P/v
F = BILsin*
I = BAcos*

The Attempt at a Solution



a. I said E = -Blv (with E being the emv and potential difference).
So -(.5 T)(2 m)(3/ms) = -3V
Question: Is my length correct? I believe I would use the distance between X and Y if it wants the potential between it...

b. I decided the direction to be counterclockwise (of the current). If the wire loop is being pulled to the right, the area to the right is increasing and the magnetic field to the left is decreasing. If the magnetic field is decreasing to the left, it is increasing to the right. According to Lenz's law, I take the opposite of this to find the current - which would mean counterclockwise direction - and hence the "-" sign in the equation -Blv.

c. I know that F=BILsin* and that I = V/R
So F = B(V/R)L (sin* isn't needed in this equation as the angles are 90)
I also know that E = -Blv (E = emf = V), so:
F = B((-BLv)/R)L, or nicely, -(B^2)(L^2)v/R
Thus, (.5 T)^2 x (4 m)^2 x 3 m/s / 5 ohms = -2.4 N
Question: I have to include the "-" sign in the Blv, right? I would think so since force is a vector and has direction, but I don't know why the force would be negative..

d. The rate at which work is done is power, and P = Fv
So I just multiple my answer in c by 3 m/s.
P = (2.4 N)(3 m/s) = 7.2 W (watts)
Again, I'm not sure of direction. I don't believe you can have "negative" power to the best of my knowledge.

----

Any help is greatly appreciated. I don't necessarily want answers because if I do the work I understand it better, but any direction to my faults would be a big help. Thanks, and have a great day.
 
Physics news on Phys.org
Actually, as of now.. I'm mostly confused about the signs. I think most of my work is right, so if someone gets a chance, could you maybe help me in that area? If not, that's okay, thanks just for reading this :D
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top