You can parametrize the surface if you want, let:
$$\vec r(x, y) = x \hat i + y \hat j + z \hat k = x \hat i + y \hat j + (1 - x^2 - y^2) \hat k$$
Find ##\vec r_x(x, y)## and ##\vec r_y(x, y)##. Use those to obtain ##\vec r_x \times \vec r_y##. Now you have a theorem which states:
$$\iint_S \vec F(x, y, z) \cdot d \vec S = \color{red}{\pm}\iint_D \vec F(\vec r(x,y)) \cdot (\vec r_x \times \vec r_y) \space dA$$
Where the region ##D## is given by the plane ##z = 1 - x^2 - y^2## for ##0 \leq z \leq 1##.
Plotting the plane for the points ##(x, 0, 0), (0, y, 0)##, and ##(0, 0, z)## will give you the limits easily, and a nice graph to look at.