Ok, so I found another formulation of Faa di Bruno's formula for the nth derivative of a composition of functions: here's your answer
\frac{d^{n}}{dx^{n}}\left(-\frac{1}{f^{2}(x)}\right) = \sum_{m=1}^{n}\left\{\frac{1}{m!}\left[\sum_{j=0}^{m-1}(-1)^{j}\frac{m!}{j!(m-j)!}f^{j}(x)\frac{d^{n}}{dx^{n}}\left( f^{m-j}(x)\right)\right]\frac{(-1)^{m+1}(m+1)!}{f^{m+2}(x)}\right\}
where f^{k}(x) is the kth power of f(x) (not the kth derivative.)
-Ben